当前位置: X-MOL 学术J. Biol. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Formaldehyde formation in the glycine cleavage system and its use for an aldolase-based biosynthesis of 1,3-prodanediol.
Journal of Biological Engineering ( IF 5.7 ) Pub Date : 2020-05-14 , DOI: 10.1186/s13036-020-00237-2
Yingying Xu 1 , Hao Meng 1 , Jie Ren 2 , An-Ping Zeng 1, 3
Affiliation  

Glycine cleavage system (GCS) occupies a key position in one-carbon (C1) metabolic pathway and receives great attention for the use of C1 carbons like formate and CO2 via synthetic biology. In this work, we demonstrate that formaldehyde exists as a substantial byproduct of the GCS reaction cycle. Three causes are identified for its formation. First, the principal one is the decomposition of N5,N10-methylene-tetrahydrofolate (5,10-CH2-THF) to form formaldehyde and THF. Increasing the rate of glycine cleavage promotes the formation of 5,10-CH2-THF, thereby increasing the formaldehyde release rate. Next, formaldehyde can be produced in the GCS even in the absence of THF. The reason is that T-protein of the GCS can degrade methylamine-loaded H-protein (Hint) to formaldehyde and ammonia, accompanied with the formation of dihydrolipoyl H-protein (Hred), but the reaction rate is less than 0.16% of that in the presence of THF. Increasing T-protein concentration can speed up the release rate of formaldehyde by Hint. Finally, a certain amount of formaldehyde can be formed in the GCS due to oxidative degradation of THF. Based on a formaldehyde-dependent aldolase, we elaborated a glycine-based one carbon metabolic pathway for the biosynthesis of 1,3-propanediol (1,3-PDO) in vitro. This work provides quantitative data and mechanistic understanding of formaldehyde formation in the GCS and a new biosynthetic pathway of 1,3-PDO.

中文翻译:

甘氨酸裂解系统中的甲醛形成及其在基于醛缩酶的1,3-丙二醇生物合成中的应用。

甘氨酸裂解系统(GCS)在单碳(C1)代谢途径中占据关键位置,并通过合成生物学对诸如甲酸盐和二氧化碳之类的C1碳的使用引起了极大关注。在这项工作中,我们证明甲醛作为GCS反应周期的主要副产物存在。确定了其形成的三个原因。首先,主要的是将N5,N10-亚甲基-四氢叶酸(5,10-CH2-THF)分解为甲醛和THF。甘氨酸裂解速率的增加会促进5,10-CH2-THF的形成,从而提高甲醛的释放速率。接下来,即使在不存在THF的情况下,也可以在GCS中产生甲醛。原因是GCS的T蛋白可以将甲胺负载的H蛋白(Hint)降解为甲醛和氨,同时形成二氢脂酰H蛋白(Hred),但是反应速率小于在THF存在下的反应速率的0.16%。增加T蛋白浓度可以加快Hint释放甲醛的速度。最后,由于THF的氧化降解,可能在GCS中形成一定量的甲醛。基于甲醛依赖性醛缩酶,我们阐述了基于甘氨酸的一种碳代谢途径,用于体外生物合成1,3-丙二醇(1,3-PDO)。这项工作提供了定量数据和对GCS中甲醛形成的机理的理解,以及1,3-PDO的新生物合成途径。基于甲醛依赖性醛缩酶,我们阐述了基于甘氨酸的一种碳代谢途径,用于体外生物合成1,3-丙二醇(1,3-PDO)。这项工作提供了定量数据和对GCS中甲醛形成的机理的理解,以及对1,3-PDO的新生物合成途径的了解。基于甲醛依赖性醛缩酶,我们阐述了基于甘氨酸的一种碳代谢途径,用于体外生物合成1,3-丙二醇(1,3-PDO)。这项工作提供了定量数据和对GCS中甲醛形成的机理的理解,以及1,3-PDO的新生物合成途径。
更新日期:2020-05-14
down
wechat
bug