当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low temperature ALD growth optimization of ZnO, TiO2, and Al2O3to be used as a buffer layer in perovskite solar cells
Journal of Vacuum Science & Technology A ( IF 2.4 ) Pub Date : 2020-03-24 , DOI: 10.1116/1.5139247
Pravakar P. Rajbhandari 1 , Tara P. Dhakal 1
Affiliation  

Organic materials provide a very small thermal budget for any postfabrication treatment or for a subsequent layer in a device fabrication. This demand for the low-temperature process has driven the focus of this study to obtain atomic layer deposited oxide layer at a low temperature suitable for a buffer layer in perovskite solar cells. The buffer layer will assist in blocking holes, effectively extract electrons, provide better shunt protection, and act as a sputter protection layer for organic perovskites. Three different oxide layers, Al2O3, ZnO, and TiO2, are grown at 100 °C and studied for this purpose using synchronous modulated flow draw atomic layer deposition (ALD) technology optimized in a commercial 200 mm ALD reactor from Sundew Technologies. It allows greater precursor utilization and shorter deposition cycle times that in turn reduces thermal processing time compared to traditional ALD processes. These thin films have been shown to enhance the fill factor and high charge extraction from the solar cell. Three oxides are compared on all aspects, among which ZnO (3 nm) along with Al2O3 (1 nm) on top of the perovskite layer have shown excellent performance improvement in the device’s power conversion efficiency.

中文翻译:

ZnO,TiO2和Al2O3的低温ALD生长优化将用作钙钛矿太阳能电池的缓冲层

有机材料为任何后处理或器件制造中的后续层提供了非常小的热预算。对低温工艺的这种需求驱动了该研究的重点,以在低温下获得适于钙钛矿太阳能电池缓冲层的原子层沉积氧化物层。缓冲层将有助于阻挡空穴,有效地提取电子,提供更好的分流保护,并用作有机钙钛矿的溅射保护层。三种不同的氧化物层:Al 2 O 3,ZnO和TiO 2将其在100°C的温度下生长,并为此使用在Sundew Technologies的商用200 mm ALD反应器中优化的同步调制流拉伸原子层沉积(ALD)技术进行了研究。与传统的ALD工艺相比,它可以提高前驱物的利用率并缩短沉积周期,从而减少热处理时间。这些薄膜已显示出可以提高填充系数并从太阳能电池中提取大量电荷。在所有方面对三种氧化物进行了比较,其中钙钛矿层顶部的ZnO(3 nm)以及Al 2 O 3(1 nm)已显示出器件功率转换效率的出色性能改善。
更新日期:2020-03-24
down
wechat
bug