当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic layer deposition of amorphous antimony sulfide (a-Sb2S3) as semiconductor sensitizer in extremely thin absorber solar cell
Journal of Vacuum Science & Technology A ( IF 2.4 ) Pub Date : 2020-03-25 , DOI: 10.1116/6.0000031
Neha Mahuli 1 , Debabrata Halder 2 , Ankan Paul 2 , Shaibal K. Sarkar 3
Affiliation  

Atomic layer deposition of amorphous antimony sulfide (a-Sb2S3) is demonstrated with an alternating exposure of tris(dimethylamino)antimony (TDMASb) and hydrogen sulfide (H2S) at 150 °C in a custom-built viscous flow reactor. Growth mechanism and deposition chemistry are investigated by in situ quartz crystal microbalance and in situ Fourier Transform Infrared spectroscopy. Reaction hypothesis facilitating the binary reaction is established by quantum mechanical density functional theory calculations that essentially support the experimental findings. The developed material is used as a photon harvester in solar cells under extremely thin absorber configuration, with TiO2 and Spiro-OMeTAD as electron and hole transporting layers, respectively. Investigation of charge injection properties with surface photovoltage spectroscopy reveals low but non-negligible density of interfacial (sensitizer/TiO2) electronic defects. The conventional viscous flow reactor configuration is modified to showerhead-type reactor configuration to achieve better uniformity and conformality of a-Sb2S3 on highly porous TiO2 scaffolds. a-Sb2S3 device performance is optimized to achieve the highest power conversion efficiencies of 0.5% while annealed crystalline c-Sb2S3 device reaches power conversion efficiencies of 1.9% under 1 sun illumination.

中文翻译:

极薄吸收体太阳能电池中作为半导体敏化剂的非晶态硫化锑(a-Sb2S3)的原子层沉积

在定制粘度流反应器中于150°C交替暴露三(二甲基氨基)锑(TDMASb)和硫化氢(H 2 S)证明了非晶态硫化锑(a-Sb 2 S 3)的原子层沉积。通过原位石英晶体微天平和原位傅里叶变换红外光谱研究了生长机理和沉积化学。通过基本支持实验结果的量子力学密度泛函理论计算,建立了促进二元反应的反应假设。所开发的材料在极薄的吸收体配置下,与TiO 2一起用作太阳能电池中的光子收集器。和Spiro-OMeTAD分别作为电子和空穴传输层。用表面光电压光谱对电荷注入性质的研究表明,界面缺陷(敏化剂/ TiO 2)电子缺陷的密度低但不可忽略。将常规的粘性流反应器构造修改为喷头型反应器构造,以在高度多孔的TiO 2支架上获得更好的a-Sb 2 S 3均匀性和共形性。对a-Sb 2 S 3的器件性能进行了优化,以实现0.5%的最高功率转换效率,同时对晶体c-Sb 2 S 3进行了退火 1次阳光照射下,该设备的功率转换效率达到1.9%。
更新日期:2020-03-25
down
wechat
bug