当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Utilizing photosensitive polymers to evaluate UV radiation exposures in different plasma chamber configurations
Journal of Vacuum Science & Technology A ( IF 2.4 ) Pub Date : 2020-03-30 , DOI: 10.1116/1.5143032
Luxherta Buzi 1 , Hiroyuki Miyazoe 1 , Matthew. P. Sagianis 1 , Nathan Marchack 1 , John M. Papalia 1 , Sebastian. U. Engelmann 1
Affiliation  

Monitoring vacuum ultraviolet (UV/VUV) emission in plasma systems is challenging as it requires specialized diagnostic systems or sensors to be compatible with these devices. This study addresses different reactor configurations and plasma chemistries with various levels of UV emission and their effects on a known set of polymers. First, the effect of He plasma treatment of organic underlayer (NFC-1400) and e-beam resist (hydrogen silsesquioxane) on line-space patterning of polysilicon at sub-100 nm pitch was investigated. By applying He plasma exposure, both before and after patterning of the optical underlayer, a significant improvement in line edge roughness (LER) from 2.5 to 1.4 nm was observed. To understand the plasma treatment mechanisms, polymers were exposed to synchrotron VUV light at 62 nm (or 20.0 eV), which coincides with the He VUV emission range (50–60 nm), followed by etching of poly-Si, and were found to have similar LER results. The refraction index measurements for both the optical underlayer and the e-beam resist revealed the key finding that the polymers absorption maxima corresponded exactly to the wavelength of ∼60 nm. Second, the impact of inductively coupled and microwave plasma configurations on etch rates and chemical properties of photoresists were investigated. Identifying specific photon-induced modifications on polymers can help detect UV/VUV emission in the plasma and decouple ion and photon effects on materials. Poly(methyl methacrylate) and poly(4-vinylphenol)-based photoresists were exposed to argon (Ar) and nitrogen (N2) plasmas. Surface and elemental analyses confirmed that plasma effects on chemical modifications, surface roughness, and etch rate were significantly higher for poly(methyl methacrylate) compared to poly(4-vinylphenol)-based photoresists. Detailed elemental and molecular structure analyses of these polymers showed relatively higher damage to both species caused from the inductively coupled plasma, which is ultimately correlated with a higher UV/VUV emission.

中文翻译:

利用光敏聚合物评估不同等离子室配置中的紫外线辐射暴露

监视等离子体系统中的真空紫外线(UV / VUV)排放具有挑战性,因为它需要专用的诊断系统或传感器才能与这些设备兼容。这项研究针对不同水平的紫外线发射及其对已知聚合物的影响,探讨了不同的反应器配置和等离子体化学。首先,研究了He等离子体处理有机底层(NFC-1400)和电子束抗蚀剂(氢倍半硅氧烷)对间距小于100 nm的多晶硅线-空间构图的影响。通过在图案化光学底层之前和之后施加He等离子体曝光,观察到线边缘粗糙度(LER)从2.5nm至1.4nm显着改善。为了解等离子体处理机理,将聚合物暴露于62 nm(或20.0 eV)的同步加速器VUV光下,它与He VUV发射范围(50–60 nm)相符,然后蚀刻多晶硅,发现具有相似的LER结果。光学底层和电子束抗蚀剂的折射率测量结果揭示了关键发现,即聚合物的最大吸收量正好对应于约60 nm的波长。其次,研究了电感耦合和微波等离子体配置对光致抗蚀剂的蚀刻速率和化学性质的影响。识别聚合物上特定的光子诱导的修饰可以帮助检测等离子体中的UV / VUV发射,并消除材料上的离子和光子效应。聚(甲基丙烯酸甲酯)和聚(4-乙烯基苯酚)基光刻胶暴露于氩气(Ar)和氮气(N 光学底层和电子束抗蚀剂的折射率测量结果揭示了关键发现,即聚合物的最大吸收正好对应于约60 nm的波长。其次,研究了电感耦合和微波等离子体配置对光致抗蚀剂的蚀刻速率和化学性质的影响。识别聚合物上特定的光子诱导的修饰可以帮助检测等离子体中的UV / VUV发射,并消除材料上的离子和光子效应。聚(甲基丙烯酸甲酯)和聚(4-乙烯基苯酚)基光刻胶暴露于氩气(Ar)和氮气(N 光学底层和电子束抗蚀剂的折射率测量结果揭示了关键发现,即聚合物的最大吸收量正好对应于约60 nm的波长。其次,研究了电感耦合和微波等离子体配置对光致抗蚀剂的蚀刻速率和化学性质的影响。识别聚合物上特定的光子诱导的修饰可以帮助检测等离子体中的UV / VUV发射,并消除材料上的离子和光子效应。聚(甲基丙烯酸甲酯)和聚(4-乙烯基苯酚)基光刻胶暴露于氩气(Ar)和氮气(N 研究了电感耦合和微波等离子体配置对光致抗蚀剂的蚀刻速率和化学性质的影响。识别聚合物上特定的光子诱导的修饰可以帮助检测等离子体中的UV / VUV发射,并消除材料上的离子和光子效应。聚(甲基丙烯酸甲酯)和聚(4-乙烯基苯酚)基光刻胶暴露于氩气(Ar)和氮气(N 研究了电感耦合和微波等离子体配置对光致抗蚀剂的蚀刻速率和化学性质的影响。识别聚合物上特定的光子诱导的修饰可以帮助检测等离子体中的UV / VUV发射,并消除材料上的离子和光子效应。聚(甲基丙烯酸甲酯)和聚(4-乙烯基苯酚)基光刻胶暴露于氩气(Ar)和氮气(N2)等离子体。表面和元素分析证实,与基于聚(4-乙烯基苯酚)的光致抗蚀剂相比,聚(甲基丙烯酸甲酯)对化学改性,表面粗糙度和蚀刻速率的等离子体影响明显更高。这些聚合物的详细元素和分子结构分析显示,归因于电感耦合等离子体的两种物质均受到相对较高的破坏,这最终与较高的UV / VUV发射相关。
更新日期:2020-03-30
down
wechat
bug