当前位置: X-MOL 学术Tectonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comment on “Active Crustal Deformation in the Trans‐Mexican Volcanic Belt as Evidenced by Historical Earthquakes During the Last 450 Years” by G. Suárez et al.
Tectonics ( IF 4.2 ) Pub Date : 2020-05-14 , DOI: 10.1029/2019tc006016
Max Suter 1
Affiliation  

The paper by Suárez et al. (2019) is to be welcomed for drawing fresh attention to the ground‐shaking hazard in central Mexico caused by continental earthquakes. These have smaller source and damage areas, a lower magnitude, and greater recurrence times than the more common subduction zone earthquakes but are known to have caused locally moderate to severe damage or were even devastating in historical times. However, some of the key assumptions in Suárez et al. (2019) are misguided, and many of the macroseismic observations underlying their analyses are inaccurate.

The source of the CE (Common Era) 1567 M w 7.2 Ameca earthquake is unlikely to be located on the northern shoulder of the Chapala graben as advocated by Suárez et al. (2019) Apparently unknown to the authors, contemporary sources such as the Relación de Ameca (Acuña, 1988) quantitatively describe the surface rupture of this earthquake along the fault bounding the Ameca half‐graben. Of the five locations with very heavy damage (macroseismic intensity of degree 9) known from primary historical sources (Suter, 2015a), which are all located in the Ameca, Zacoalco, and Sayula half‐grabens, just one is marked in the related graph by Suárez et al. (2019) (their Figure 3). Accounting for these data points in their inversion would obviously change significantly its outcome, such as shifting the source location to this high‐intensity cluster. Moreover, there is no evidence that this earthquake occurred on 27 December 1568 as asserted by Suárez et al. Based on sixteenth century documents, its origin can clearly be pinpointed to 28 December 1567 at dawn (Suter, 2019a).

The macroseismic observations in Suárez et al. (2019) for the 14 and 15 April 1611 earthquakes are not based on contemporary documentary sources with exception of the CE 1653 chronicle by Antonio Tello, according to which earthquakes were felt on those days in Zapotlán (now Ciudad Guzmán) (Tello, 1891). There is no information about these earthquakes in Bárcena (1875) as claimed by Suárez et al. (2019) and the destruction of the Franciscan convents in Sayula and Zapotíltic and of the recently rebuilt church in Zapotlán by these earthquakes reported in Munguía Cárdenas (2012) and Pérez Verdía (1951) is not backed up by primary sources. According to the Tello chronicle, Zapotlán was not damaged by the 14 and 15 April 1611 earthquakes, as wrongly described by Suárez et al. (2019) but by the 26 August 1611 earthquake that ruined the church, convent, and many residential buildings (Tello, 1891, p. 770). The destruction caused by the same 26 August 1611 earthquake in Mexico City is described in detail by the indigenous historian and eye witness Chimalpahin Quauhtlehuanitzin (Lockhart et al., 2006; Townsend, 2017). This earthquake was likely caused by a major rupture of the subduction interface in the Michoacán region and requires further documentation and analysis. The 14 and 15 April 1611 events, on the other hand, likely were volcanic tremors and not sourced by faults of the Colima graben as assumed by Suárez et al. (2019). According to the chronicle by Mota Padilla, written in CE 1742, the Fuego de Colima Volcano erupted on 15 April 1611 and spread ashes over a distance of more than 40 Mexican colonial leagues (168 km) (Mota Padilla, 1870, p. 271). Because the only contemporary documentary source for the 14 and 15 April 1611 earthquakes is in reality a felt report for Zapotlán, the epicenter location and 6.4 ± 0.2 magnitude estimate by Suárez et al. (2019) lack evidence and should be discarded.

Similarly misleading is the presentation of the 22 and 23 October 1749 earthquakes that were devastating north of Fuego de Colima Volcano, in the northern Colima graben. Suárez et al. (2019) ignore contemporary archival sources, according to which these earthquakes razed Zapotlán where only three residential buildings remained standing (Suter, 2019b). Furthermore, the macroseismic intensities of degree 7 they assigned to Guadalajara and Zacoalco (their Figure 5) based on the 23 March 1875 report in the newspaper El Siglo Diez y Nueve are not supported by historical documents. A building inspection of the Guadalajara cathedral shortly after the 23 October 1749 mainshock could not find any damage to the vaulted roof and the walls (Compendio de los libros de actas del venerable cabildo de la santa iglesia catedral de Guadalajara , libro 11, foja 58; López, 1971). Apparently unknown to Suárez et al. (2019) the newspaper report is a flawed summary of a 1771 document (Auto proveído por la Real Audiencia de Guadalajara ; Rivera, 1989, p. 235–236). The original source includes not a word about earthquake damage in Zacoalco.

Suárez et al. (2019) neglect considerable recent research into the historical seismicity of the Chapala graben region, where the 2 October 1847 continental earthquake was locally devastating on the northern graben shoulder. It razed the villages of Poncitlán and Ocotlán in the state of Jalisco, where at least 58 persons perished (Suter, 2018). The macroseismic observations for this historical event and the elevated background seismicity indicate that the Chapala graben is active and poses a major ground‐shaking hazard to the nearby metropolitan areas of Ocotlán and Guadalajara.

Suárez et al. (2019) also failed to take into account the historical seismicity of the Morelia region where the seismic hazard is high because of the seismically active Morelia normal fault that dips beneath this urban area with a population of more than 900,000 habitants. Several slip events on this fault can be inferred from paleoseismicity studies. The latest of them must have occurred after CE 1290–1435, during the postclassic period or possibly during early novohispanic times (Suter, 2016), and recent activity of this fault was recorded instrumentally by Singh et al. (2012).

As for the 19 June 1858 earthquake, the authors fail to acknowledge the careful macroseismic study of this great earthquake by Molina del Villar (20012004), which provides macroseismic data practically identical to theirs. I consider it unlikely that this was a continental earthquake as interpreted by Suárez et al. (2019) and prefer the interpretation by Singh et al. (1996) of this event as having an intraslab normal faulting source, close to the southern margin of the Trans‐Mexican Volcanic Belt (hereafter, TMVB). A continental normal faulting earthquake of a 7.6 ± 0.3 magnitude with focus within the belt, as suggested by the authors, would have an average throw >2 m and a rupture length >100 km at the surface (Stirling et al., 2013; Suter, 2015b) and would thus have to extend over an array of several fault segments, for which there is no evidence. It is highly unlikely that such an enormous surface rupture would have gone unreported in CE 1858 in this densely populated region. Furthermore, a surface rupture of such dimensions should still be easily detectable in this semiarid region, which has been among the geologically most field studied in Mexico over the last 30 years (Ferrari et al., 20122018). In fact, the epicenter resulting from the inversion by Suárez et al. (2019) is not located within the array of east‐west normal faults deforming the TMVB but south of it (their Figure 7). The 19 September 2017 M w 7.1 intraslab earthquake is a reminder that such earthquakes can have a severe societal impact within the TMVB (Singh et al., 2018).

As for the 1875 San Cristóbal de la Barranca continental earthquake, the statements by Suárez et al. (2019) that the town of San Cristóbal was moved in the 1960s and the epicentral region was transformed due to the construction of a concrete dam on the Santiago River is outright fabricated and clearly shows that the authors lack a first‐hand knowledge of the study area. San Cristóbal de la Barranca is still at the same location where it was during the 1875 earthquake, and the Santiago River is not dammed in that region. As for the 7.0 ± 0.2 magnitude of this earthquake resulting from their inversion, this number is almost certainly far too high. The detailed contemporary field survey by Iglesias et al. (1877) did not find any surface rupture as would be expected for an extensional continental earthquake of this magnitude (dePolo, 1994). Based on the felt and damage areas inferred from Figure 6 in Suárez et al. (2019) and calibrated magnitude‐isoseismal area relationships of shallow normal fault earthquakes in the TMVB (Suter et al., 1996), the magnitude of this earthquake is more likely to be in the 5.5 to 6.0 range.

The epicentral region of the 1887 Pinal de Amoles earthquake is interpreted by Suárez et al. (2019) to be part of the TMVB, whereas according to Zúñiga et al. (2017, their Figure 4), this region belongs to their Burgos basin seismotectonic province. Both these interpretations lack a basic understanding of the continental tectonics of north‐central Mexico. The Burgos basin is a foreland basin of the Paleogene Coahuila fold belt (Eguiluz, 2011; Pérez‐Cruz, 1993) near the border to Texas, and borehole breakouts indicate there a northwest‐southeast orientation of the current least horizontal stress (Suter, 1987). The epicentral region of the Pinal de Amoles earthquake, on the other hand, is part of the tectonically distinctly different southern Basin and Range Province, which is characterized by active east‐west oriented extension (Suter, 1991). A north‐south striking normal fault northwest of Pinal de Amoles with a morphologically pronounced fault scarp, 45 km long, likely was the source of the 1887 event (Suter et al., 1996, their Figure 2). An earthquake sequence in 2010–2011, located just south of the trace of this fault, yielded focal mechanisms indicating a north‐south striking normal fault as source (Clemente‐Chávez et al., 2013). The northern margin of the TMVB is located ~60 km south of Pinal de Amoles, where north striking normal faults of the Basin and Range Province are intersected by east‐west striking normal faults of the Aljibes half‐graben (Suter et al., 1995). This structural configuration can be explained by horizontal migration of the boundary between the two stress provinces with time, which requires intermittent permutations between the intermediate and least principal stresses.

The central part of the TMVB is characterized by an active extensional fault network. In 1912 some of the faults ruptured to the surface in an M  ~7.0 earthquake causing moderate damage in Mexico City (Suter, 2014), and the paleoseismicity studies summarized by Suárez et al. (2019) document that the major segments of this fault system ruptured repeatedly during the Holocene. However, open questions still remain, especially whether the segmented southern border of the fault network, 80 km long, ruptured across segment boundaries in prehistoric extreme events and what ground shaking such a throughgoing rupture would cause in the nearby Greater Mexico City metropolitan area. As for the slip rates and mean recurrence intervals reviewed by Suárez et al. (2019) these paleoseismicity results should be taken with a grain of salt. Most of the studies do not document displacements across the master faults but across secondary ruptures on their hanging wall side, notwithstanding that most of the slip is likely to occur along the primary fault surface itself. Other studies focus on splays near the tips of major faults, where the throw is attenuated. In both situations, only a minimum of the overall displacement is intercepted by the excavated trenches, and the slip rates in the center part of the master faults are likely to be significantly higher than estimated in these studies. Furthermore, earthquake extreme events often cluster in time (Ortuño et al., 2019; Salditch et al., 2020; Scholz, 2019 and references therein), and the rupture recurrence times can have such a high variance that the average becomes meaningless.

Suárez et al. (2019) failed to develop an intensity attenuation model for the TMVB but applied instead a model for Southern California (Los Angeles Basin and San Andreas fault region) by Bakun (2006). They wrongly claim to have inverted in Suárez and Caballero‐Jiménez (2012) their macroseismic data of the 1912 Acambay and 1920 Jalapa earthquakes using published attenuation equations for the much different geodynamic frameworks of Southern California, Hispaniola, and Italy, which borders on disinformation. Moreover, Suárez et al. (2019) did not take into account published intensity attenuation curves for seven early instrumental earthquakes in the TMVB spanning a broad range of instrumental magnitudes between 4 and 7 (Suter et al., 1996, their Figure 12). These curves show considerable differences in the decay of intensity with epicentral distance, which depends not only on the magnitude but also on focal depth, geometric spreading, and anelastic attenuation. Any generalized intensity attenuation model for the continental earthquakes within the TMVB will for that reason have a large uncertainty. Furthermore, the inversion applied by Suárez et al. (2019) does not resolve for the epicenter as they assume but for the point of maximum intensity, which highly depends on site amplification. A case in point is the intensity distribution of Michoacán‐Guerrero subduction interface earthquakes, which do not have their maximum intensity in their epicentral region but in the Mexico City basin.

In conclusion, the commented article remains intransparent. It lacks a self‐critical appraisal of the applied methodology and a critical analysis of the underlying paleoseismic and macroseismic observations. These basic fallacies severely undermine the well‐meant intent by Suárez et al. (2019) to further our understanding of the ground‐shaking hazard in this densely populated region.



中文翻译:

G.Suárez等人评论“近450年来历史地震证明的跨墨西哥火山带地壳活动变形”。

Suárez等人的论文。(2019)受到人们的关注,因为它再次引起了人们对墨西哥中部由大陆地震造成的地震动危害的关注。与更常见的俯冲带地震相比,它们的震源和破坏区更小,震级更低,复发时间更长,但已知在局部地区造成了中度至严重的破坏,甚至在历史时期甚至是破坏性的。但是,Suárez等人的一些关键假设。(2019)被误导了,其分析所依据的许多宏观地震观测都不准确。

正如苏亚雷斯(Suárez)等人所主张的那样,CE(共同时代)1567 M w 7.2阿美卡地震的震源不太可能位于恰帕拉pal地的北肩。(2019)作者显然不知道,诸如Relaciónde Ameca(Acuña,  1988)的当代资料定量地描述了沿Ameca Half-graben边界的断层的地震表面破裂。在主要历史资料来源(Suter,2015a)中已知的五个破坏非常严重的地区(宏观地震烈度为9 ),它们都位于阿美卡,扎科阿科和塞尤拉半草丛中,在相关图中仅标记了一个由Suárez等人撰写。(2019)(他们的图3)。在反演中考虑这些数据点显然会显着改变其结果,例如将源位置转移到此高强度群集。此外,没有证据表明Suárez等人在1568年12月27日发生地震。根据16世纪的文献,其起源可以明确地确定到1567年12月28日黎明(Suter,  2019a)。

Suárez等人的宏观地震观测。(2019)1611年4月14日至15日的地震并非基于当代文献资料,只有安东尼奥·特洛(Antonio Tello)的CE 1653编年史除外,据记载,那一天在Zapotlán(现在的古兹曼城)发生了地震(1891年,特洛 ) 。如Suárez等人所声称的,没有关于Bárcena(1875年)地震的信息。(2019)和MunguíaCárdenas(2012)和PérezVerdía(1951)报道的地震摧毁了Sayula和Zapotíltic的方济各会修道院和Zapotlán最近重建的教堂。)不受主要来源的支持。根据Tello编年史,如Suárez等人错误地描述的,Zapotlán并未受到1611年14月14日至15日地震的破坏。(2019年),但到1611年8月26日地震摧毁了教堂,修道院和许多住宅建筑物(Tello,  1891年,第770页)。土著历史学家和目击证人Chimalpahin Quauhtlehuanitzin详细描述了1611年8月26日在墨西哥城发生的地震造成的破坏(洛克哈特等人,  2006年;汤森德,  2017年))。这次地震很可能是由于米却肯州地区俯冲界面发生重大破裂而引起的,需要进一步的文件记录和分析。另一方面,1611年4月14日至15日的事件很可能是火山震颤,而不是由Suárez等人假设的科利马grab陷断层引起的。(2019)。根据Mota Padilla编年史,写于1742年,Fuego de Colima火山于1611年4月15日爆发,并在超过40个墨西哥殖民联盟(168公里)范围内散布了灰烬(Mota Padilla,  1870,第271页) 。因为实际上是1611年14月15日至15日地震的唯一当代文献来源,实际上是Suárez等人对Zapotlán,震中位置和6.4±0.2震级估计的报道。(2019)缺乏证据,应将其丢弃。

同样令人误解的是1749年10月22日至23日发生的地震,该地震在科利马北部的Fuego de Colima火山以北毁灭。Suárez等。(2019)忽略了当代档案资源,据此地震将Zapotlán夷为平地,仅三座居民楼仍然屹立(Suter,  2019b)。此外,历史文献不支持他们根据1875年3月23日报纸El Siglo Diez y Nueve的报告分配给瓜达拉哈拉和Zacoalco的7级宏观地震烈度(图5)。1749年10月23日主震发生后不久,对瓜达拉哈拉大教堂的建筑物进行了检查,未发现拱形屋顶和墙壁有任何损坏(墨西哥首都瓜达拉哈拉天主教会历史悠久的自由女神像汇编,第11卷,第58页;洛佩兹(  1971)。Suárez等人显然不知道。(2019年)报纸报道是1771年文件的有缺陷的摘要(瓜达拉哈拉的真实证明;里维拉,  1989年,第235-236页)。原始消息中没有提及Zacoalco的地震破坏情况。

Suárez等。(2019)忽略了对Chapala地en地区的历史地震活动的大量研究,该地区1847年10月2日的大陆地震在北部地en地区造成了毁灭性的破坏。它夷为平地,在哈利斯科州的Poncitlán和Ocotlán村庄丧生,至少有58人丧生(Suter,  2018年)。对这一历史事件的宏观地震观测和较高的背景地震活动表明,恰帕拉山地en很活跃,对附近的奥科特兰和瓜达拉哈拉大都会地区构成了重大的撼动地危险。

Suárez等。(2019)也没有考虑到莫雷利亚地区的历史地震活动性,那里的地震危险性很高,这是由于地震活跃的莫雷利亚正断层浸没在该市区下方,人口超过90万。可以从古地震研究中推断出该断层上的几条滑动事件。最新的断层一定发生在CE 1290–1435年之后,后经典时期或可能在新西班牙时期(Suter,  2016年),Singh等人通过仪器记录了该断层的近期活动。(2012)。

而对于1858年6月19日的地震中,作者不承认由莫利纳德尔比利亚尔(本大地震的强震仔细研究2001年,  2004年),它提供了强震的数据几乎相同,他们的。我认为这不可能是Suárez等人解释的大陆性地震。(2019)并倾向于Singh等人的解释。(1996)认为该事件具有板内正断层源,靠近跨墨西哥火山带的南部边缘(以下简称TMVB)。正如作者所建议的那样,大陆正常的断层地震为7.6±0.3级,集中在该带内,平均投掷> 2 m,地表破裂长度> 100 km(Stirling等, 2013 ; Suter,  2015b),因此将不得不延伸到几个断层段的阵列上,对此没有证据。CE 1858在这个人口稠密的地区极不可能发生如此巨大的表面破裂。此外,这样的尺寸的表面破裂仍应该在这个半干旱地区,已在墨西哥在过去的30年研究的地质最字段中(Ferrari等人,容易检测的 2012,  2018)。实际上,Suárez等人的反演导致震中。(2019)不在使TMVB变形的东西向正断层阵列之内,而是位于其南部(图7)。2017年9月19日M w7.1平板内地震提醒我们,此类地震可能会对TMVB产生严重的社会影响(Singh等,  2018)。

至于1875年的圣克里斯托瓦尔·德拉巴兰卡大地震,苏亚雷斯(Suárez)等人的声明。(2019年),圣克里斯托瓦尔镇在1960年代被搬迁,而震中区域由于在圣地亚哥河上建造的混凝土大坝的建造而被彻底捏造,并清楚地表明作者缺乏对该研究的第一手资料区。SanCristóbalde la Barranca仍与1875年地震时的位置相同,圣地亚哥河在该地区没有筑坝。至于由于地震倒转而造成的7.0±0.2级地震,这个数字几乎可以肯定太高了。Iglesias等人的详细当代田野调查。(1877年)没有发现任何表面破裂,这对于这种规模的大陆扩张地震是可以预期的(dePolo,  1994)。根据Suárez等人的图6推断的毛毡和损坏区域。(2019)和TMVB中浅层正常断层地震的标定等震面积关系(Suter等,  1996),该地震的震级更可能在5.5至6.0范围内。

Suárez等人解释了1887年Pinal de Amoles地震的震中区域。(2019年)成为TMVB的一部分,而根据Zúñiga等人的说法。(2017年,他们的图4),该地区属于他们的布尔戈斯盆地地震构造省。这两种解释都缺乏对墨西哥中北部大陆构造的基本了解。布尔戈斯盆地是德州边界附近的古近纪Coahuila褶皱带的前陆盆地(Eguiluz,  2011 ;Pérez-Cruz,  1993),井眼破裂表明那里是目前最小水平应力的西北-东南方向(Suter,  1987))。另一方面,阿莫莱斯山地震的震中区域是构造上截然不同的南部盆地和山脉省的一部分,其特征是东西向活跃的扩展(苏特,  1991)。Pinal de Amoles西北部的一个南北走向的正断层,形态上明显的断层陡峭,长45 km,很可能是1887年事件的起源(Suter等,  1996,图2)。位于断层痕迹南侧的2010-2011年地震序列产生了震源机制,表明南北走向的正断层是震源(Clemente-Chávez等,  2013))。TMVB的北缘位于Amoles山脉以南约60公里处,盆地和Range Range的北向正断层与Aljibes half-graben的东西向正断层相交(Suter等,  1995)。)。可以通过两个应力省之间的边界随时间的水平迁移来解释这种结构配置,这需要在中间应力和最小主应力之间进行间歇排列。

TMVB的中央部分具有活动的扩展故障网络。1912年,部分断层在 7.0级M级地震中破裂到地表,对墨西哥城造成了中度破坏(苏特,  2014年),Suárez等人总结了古地震研究。(2019)记录了这个断裂系统的主要部分在全新世期间反复破裂。但是,仍然存在悬而未决的问题,特别是在史前的极端事件中,长达80公里的断层网络的南部边界是否在段边界处破裂,以及这种持续性破裂的地面将在附近的大墨西哥城都会区引起什么。至于滑倒率和平均复发间隔,由Suárez等人回顾。(2019)这些古地震结果应该与一粒盐一起考虑。尽管大多数滑动很可能是沿主要断层表面本身发生的,但大多数研究都没有记录主断层的位移,而是其悬壁一侧的次生断裂的位移。其他研究则集中在主要断层尖端附近的张开,在此范围内投掷会减弱。在这两种情况下,开挖的沟槽仅能拦截全部位移,并且主断层中央部分的滑移率可能大大高于这些研究的估计值。此外,地震极端事件通常会及时聚集(Ortuño等,  2019 ; Salditch等,  2020 ; Scholz,  2019以及其中的参考文献),并且破裂的复发时间可能会有很大的差异,以至于平均值变得毫无意义。

Suárez等。Bakun(2006)(2019)未能为TMVB建立强度衰减模型,而是应用了南加州(洛杉矶盆地和圣安德烈亚斯断裂带)的模型。他们错误地声称在Suárez和Caballero-Jiménez(2012)中使用已发布的衰减方程式反演了南加州,西班牙裔和意大利的迥然不同的地球动力学框架,从而颠覆了1912年Acambay和1920年Jalapa地震的宏观地震数据,这与虚假信息接壤。此外,Suárez等。(Suter et al。,(2019))没有考虑到TMVB中七次早期仪器地震的强度衰减曲线,这些地震的仪器震级范围在4至7之间(Suter等, 1996年,他们的图12)。这些曲线显示强度随震中距离的衰减有很大差异,这不仅取决于震级,还取决于焦深,几何扩展和非弹性衰减。因此,TMVB内大陆地震的任何广义强度衰减模型都将具有很大的不确定性。此外,Suárez等人应用了反演。(2019)并没有像他们所假设的那样对震中进行解析,而是针对最大强度这一点进行了解析,这在很大程度上取决于站点的放大程度。一个典型的例子是米却肯-格雷罗俯冲界面地震的强度分布,该地震在震中区域没有最大强度,在墨西哥城盆地却没有。

总之,被评论的文章仍然是不透明的。它缺乏对应用方法的自我批评性评估,也缺乏对潜在的古地震和宏观地震观测的批判性分析。这些基本的谬论严重破坏了Suárez等人的良好意图。(2019年)进一步加深了我们对这个人口稠密地区的地震动危害的认识。

更新日期:2020-06-19
down
wechat
bug