当前位置: X-MOL 学术J. Geophys. Res. Space Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Observations of Electron Precipitation During Pulsating Aurora and Its Chemical Impact
Journal of Geophysical Research: Space Physics ( IF 2.8 ) Pub Date : 2020-05-13 , DOI: 10.1029/2019ja027713
Fasil Tesema 1, 2 , Noora Partamies 1, 2 , H. Nesse Tyssøy 2 , Antti Kero 3 , C. Smith‐Johnsen 2
Affiliation  

Pulsating auroras (PsAs) are low‐intensity diffuse aurora, which switch on and off with a quasiperiodic oscillation period from a few seconds to ∼10 s. They are predominantly observed after magnetic midnight, during the recovery phase of substorms and at the equatorward boundary of the auroral oval. PsAs are caused by precipitating energetic electrons, which span a wide range of energies between tens and hundreds of keV. Such energetic PsA electrons will deposit their energy at mesospheric altitudes and induce atmospheric chemical changes. To examine the effects of energetic PsA electrons on the atmosphere, we first collect electron flux and energy measurements from low‐latitude spacecraft to construct a typical energy spectrum of precipitating electrons during PsA. Among the 840 PsA events identified using ground‐based auroral all‐sky camera (ASC) network over the Fennoscandian region, 253 events were observed by DMSP, POES, and FAST spacecraft over the common field of view of five ASCs. The combined measurements from these spacecraft enable us to obtain an energy spectrum consisting of nonrelativistic and relativistic (30 eV to 1,000 keV) electrons during PsA. The median spectrum was found to be in good agreement with earlier estimates of the PsA spectra. We then use the Sodankylä Ion‐neutral Chemistry (SIC) model to assess the chemical effect of PsA electrons. The observed extreme and median spectra of PsA produce a significant depletion in the mesospheric odd oxygen concentration up to 78%.

中文翻译:

脉动极光期间电子沉淀及其化学影响的观测

脉动极光(PsAs)是低强度弥散性极光,它以几秒钟至大约10 s的准周期振荡周期打开和关闭。主要在午夜磁性之后,亚暴的恢复阶段以及极光椭圆的赤道边界观察到它们。PsA是由高能电子的沉淀引起的,高能电子跨越数十到数百keV的广泛能量。这种高能的PsA电子将在中层高度沉积其能量,并引起大气化学变化。为了检查高能PsA电子对大气的影响,我们首先从低纬度航天器收集电子通量和能量测量值,以构建PsA期间沉淀电子的典型能谱。在Fennoscandian地区使用地面极光全天候摄像头(ASC)网络识别出的840个PsA事件中,DMSP,POES和FAST航天器在五个ASC的共同视野中观测到253个事件。这些航天器的综合测量值使我们能够获得在PsA期间由非相对论和相对论(30 eV至1,000 keV)电子组成的能谱。发现中值光谱与PsA光谱的较早估计非常一致。然后,我们使用Sodankylä离子中性化学(SIC)模型来评估PsA电子的化学作用。观测到的PsA的极端和中值光谱会导致中层奇数氧浓度显着减少,最高可达78%。和FAST航天器在五个ASC的共同视野中。这些航天器的综合测量值使我们能够获得在PsA期间由非相对论和相对论(30 eV至1,000 keV)电子组成的能谱。发现中值光谱与PsA光谱的较早估计非常一致。然后,我们使用Sodankylä离子中性化学(SIC)模型来评估PsA电子的化学作用。观测到的PsA的极端和中值光谱会导致中层奇数氧浓度显着减少,最高可达78%。和FAST航天器在五个ASC的共同视野中。这些航天器的综合测量值使我们能够获得在PsA期间由非相对论和相对论(30 eV至1,000 keV)电子组成的能谱。发现中值光谱与PsA光谱的较早估计非常一致。然后,我们使用Sodankylä离子中性化学(SIC)模型来评估PsA电子的化学作用。观测到的PsA的极端和中值光谱会导致中层奇数氧浓度显着减少,最高可达78%。发现中值光谱与PsA光谱的较早估计非常一致。然后,我们使用Sodankylä离子中性化学(SIC)模型来评估PsA电子的化学作用。观测到的PsA的极端和中值光谱会导致中层奇数氧浓度显着减少,最高可达78%。发现中值光谱与PsA光谱的较早估计非常一致。然后,我们使用Sodankylä离子中性化学(SIC)模型来评估PsA电子的化学作用。观测到的PsA的极端和中值光谱会导致中层奇数氧浓度显着减少,最高可达78%。
更新日期:2020-05-13
down
wechat
bug