当前位置: X-MOL 学术Russ. J. Non-ferrous Metals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spheroidization of Iron Powder in Microwave and Hybrid Plasma Torches
Russian Journal of Non-Ferrous Metals ( IF 0.6 ) Pub Date : 2020-05-13 , DOI: 10.3103/s1067821220020042
S. A. Eremin , V. N. Anikin , D. V. Kuznetsov , I. A. Leontiev , Yu. D. Stepanov , V. Z. Dubinin , A. M. Kolesnikova , Yu. M. Yashnov

The process of porous iron powder spheroidization with a particle size from 45 to 85 μm is investigated in the microwave discharge and joint microwave and DC discharge modes in nitrogen and helium plasma. The powder was prepared by air spraying and annealed in hydrogen. Spraying in plasma results in hollow spheroidized particles with a wall thickness from 1 to 10 μm. The fraction of spheroidized powder particles in their total number is determined. It is revealed that the degree of spheroidization of iron powder particles linearly increases with an increase in the microwave radiation power from 1.5 to 5 kW. The combination of operational conditions of the microwave radiation with the arc discharge is observed when using the hybrid plasmatron mode, which makes it possible to increase the plasma temperature. An almost 100% spheroidization of iron powder is attained with the power ratio of microwave and arc discharges of 1 : 1. The metallographic investigation of spheroidized particles showed that their finite size differs from the initial one approximately tenfold. It is established that, irrespective of the spheroidization mode, the iron powder oxidizes, which is caused by an insufficient degree of purification of plasma-forming gases. The structure of the particle surface when using nitrogen or helium as a plasma-forming gas is different. The experiments show that the application of helium is preferential because the particles have only insignificant roughness in this case when compared with the particle structure when performing spheroidization with the use of nitrogen.

中文翻译:

微波和混合等离子体炬中铁粉的球化

在氮气和氦气等离子体的微波放电以及联合微波和直流放电模式下,研究了粒径为45至85μm的多孔铁粉球化过程。通过空气喷雾制备粉末,并在氢气中退火。等离子喷涂产生的空心球状颗粒的壁厚为1至10μm。确定球状粉末颗粒在其总数中所占的比例。结果表明,随着微波辐射功率从1.5 kW增加到5 kW,铁粉颗粒的球化程度呈线性增加。当使用混合等离子加速器模式时,观察到微波辐射的操作条件与电弧放电的结合,这使得可以提高等离子体温度。在微波和电弧放电的功率比为1:1的情况下,铁粉几乎达到100%的球化度。球化颗粒的金相研究表明,其有限尺寸与最初的尺寸相差十倍左右。可以确定的是,与球化模式无关,铁粉被氧化,这是由于等离子体形成气体的净化程度不足所致。当使用氮气或氦气作为等离子体形成气体时,颗粒表面的结构不同。实验表明,氦气的应用是优选的,因为与使用氮气进行球化时的颗粒结构相比,在这种情况下颗粒仅具有微不足道的粗糙度。球形颗粒的金相研究表明,它们的有限尺寸与最初的尺寸相差十倍左右。可以确定的是,与球形化模式无关,铁粉被氧化,这是由于等离子体形成气体的净化程度不足所致。当使用氮气或氦气作为等离子体形成气体时,颗粒表面的结构不同。实验表明,氦气的应用是优选的,因为与使用氮气进行球化时的颗粒结构相比,在这种情况下颗粒仅具有微不足道的粗糙度。球化颗粒的金相研究表明,它们的有限尺寸与最初的尺寸相差十倍左右。可以确定的是,与球化模式无关,铁粉被氧化,这是由于等离子体形成气体的净化程度不足所致。当使用氮气或氦气作为等离子体形成气体时,颗粒表面的结构不同。实验表明,氦气的应用是优选的,因为与使用氮气进行球化时的颗粒结构相比,在这种情况下颗粒仅具有微不足道的粗糙度。不论球化模式如何,铁粉都会被氧化,这是由于等离子体形成气体的净化程度不足所致。当使用氮气或氦气作为等离子体形成气体时,颗粒表面的结构不同。实验表明,氦气的应用是优选的,因为与使用氮气进行球化时的颗粒结构相比,在这种情况下颗粒仅具有微不足道的粗糙度。不论球化模式如何,铁粉都会被氧化,这是由于等离子体形成气体的净化程度不足所致。当使用氮气或氦气作为等离子体形成气体时,颗粒表面的结构不同。实验表明,氦气的应用是优选的,因为与使用氮气进行球化时的颗粒结构相比,在这种情况下颗粒仅具有微不足道的粗糙度。
更新日期:2020-05-13
down
wechat
bug