当前位置: X-MOL 学术Bull. Eng. Geol. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strain-softening composite damage model of rock under thermal environment
Bulletin of Engineering Geology and the Environment ( IF 3.7 ) Pub Date : 2020-05-09 , DOI: 10.1007/s10064-020-01808-9
Wen-lin Feng , Chun-sheng Qiao , Tan Wang , Ming-yuan Yu , Shuang-jian Niu , Zi-qi Jia

To ensure the safe and effective application of deep geotechnical engineering, it is necessary to establish a suitable constitutive model of the rocks in thermal environment, including geothermal energy mining, and deep geological treatment of nuclear waste and tunnel fire. A strain-softening damage model of the rocks with defect growth is established based on damage evolution. According to the change in the tangent modulus from the compression phase to the elastic stage, we established a constitutive model reflecting the nonlinearity characteristics of the compression phase. According to the change in the energy conversion, the energy consumption coefficient is introduced to describe the deformation characteristics of the rocks when the residual stress is reached. The specific physical meaning and the calculation method of the energy consumption coefficient are given to correct the shortcomings of the evolution of the damage variable. We then analyzed the relationship between parameters in the constitutive model of the rocks at high temperature and normal temperature. Based on the constitutive model of the rocks at normal temperature, we established a constitutive model reflecting the influence of high temperature. Finally, the established model fit the stress-strain curves of several kinds of the rocks at different temperatures and generated desired results. The established model can be used to describe the stress-strain curve characteristics of the rocks at different temperatures.



中文翻译:

热环境下岩石的应变软化复合损伤模型

为了确保深层岩土工程的安全和有效应用,有必要建立适合热环境下岩石的本构模型,包括地热能开采,核废料的深部地质处理和隧道火灾。基于损伤演化,建立了具有缺陷生长的岩石应变软化损伤模型。根据从压缩阶段到弹性阶段的切线模量变化,我们建立了反映压缩阶段非线性特性的本构模型。根据能量转换的变化,引入能量消耗系数来描述岩石达到残余应力时的变形特性。给出了具体的物理意义和能耗系数的计算方法,以纠正损伤变量演化的缺点。然后,我们分析了高温和常温下岩石本构模型中参数之间的关系。基于常温下岩石的本构模型,建立了反映高温影响的本构模型。最后,建立的模型拟合了几种岩石在不同温度下的应力-应变曲线,并产生了预期的结果。建立的模型可用于描述不同温度下岩石的应力-应变曲线特征。然后,我们分析了高温和常温下岩石本构模型中参数之间的关系。基于常温下岩石的本构模型,建立了反映高温影响的本构模型。最后,建立的模型拟合了几种岩石在不同温度下的应力-应变曲线,并产生了预期的结果。建立的模型可用于描述不同温度下岩石的应力-应变曲线特征。然后,我们分析了高温和常温下岩石本构模型中参数之间的关系。基于常温下岩石的本构模型,建立了反映高温影响的本构模型。最后,建立的模型拟合了几种岩石在不同温度下的应力-应变曲线,并产生了预期的结果。建立的模型可用于描述不同温度下岩石的应力-应变曲线特征。建立的模型拟合了几种岩石在不同温度下的应力-应变曲线,并产生了预期的结果。建立的模型可用于描述不同温度下岩石的应力-应变曲线特征。建立的模型拟合了几种岩石在不同温度下的应力-应变曲线,并产生了预期的结果。建立的模型可用于描述不同温度下岩石的应力-应变曲线特征。

更新日期:2020-05-09
down
wechat
bug