当前位置: X-MOL 学术Acta Math. Hungar. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the p-adic properties of Stirling numbers of the first kind
Acta Mathematica Hungarica ( IF 0.6 ) Pub Date : 2020-05-13 , DOI: 10.1007/s10474-020-01037-2
S. F. Hong , M. Qiu

Let n, k and a be positive integers. The Stirling numbers of the first kind, denoted by s ( n, k ), count the number of permutations of n elements with k disjoint cycles. Let p be a prime. Lengyel, Komatsu and Young, Leonetti and Sanna, Adelberg, Hong and Qiu made some progress in the study of the p -adic valuations of s ( n, k ). In this paper, by using Washington’s congruence on the generalized harmonic number and the n -th Bernoulli number B n and the properties of m -th Stirling numbers of the first kind obtained recently by the authors, we arrive at an exact expression or a lower bound on v p ( s ( ap, k )) with a and k being integers such that $$1\le a\le p-1$$ 1 ≤ a ≤ p - 1 and $$1\le k\le ap$$ 1 ≤ k ≤ a p . This infers that for any regular prime $$p\ge 7$$ p ≥ 7 and for arbitrary integers a and k with $$5\le a\le p-1$$ 5 ≤ a ≤ p - 1 and $$a-2\le k\le ap-1$$ a - 2 ≤ k ≤ a p - 1 , one has $$v_{p}(H(ap-1,k)) < -\frac{\log{(ap-1)}}{2\log p}$$ v p ( H ( a p - 1 , k ) ) < - log ( a p - 1 ) 2 log p with $$H(ap-1, k)$$ H ( a p - 1 , k ) being the k -th elementary symmetric function of $$1, \frac{1}{2}, \ldots , \frac{1}{ap-1}$$ 1 , 1 2 , … , 1 a p - 1 . This gives a partial support to a conjecture of Leonetti and Sanna. We also present results on $$v_p(s(ap^{n},ap^{n}-k))$$ v p ( s ( a p n , a p n - k ) ) from which one can derive that under certain condition, for any prime $$p\ge 5$$ p ≥ 5 , any odd number $$k\ge 3$$ k ≥ 3 and any sufficiently large integer n , if $$(a,p)=1$$ ( a , p ) = 1 , then $$v_p(s(ap^{n+1},ap^{n+1}-k))=v_p(s(ap^{n},ap^{n}-k))+2$$ v p ( s ( a p n + 1 , a p n + 1 - k ) ) = v p ( s ( a p n , a p n - k ) ) + 2 . It confirms partially Lengyel’s conjecture.

中文翻译:

关于第一类斯特林数的 p-adic 性质

令 n、k 和 a 为正整数。第一类斯特林数,用 s ( n, k ) 表示,计算具有 k 个不相交循环的 n 个元素的排列数。设 p 为素数。Lengyel、Komatsu 和 Young、Leonetti 和 Sanna、Adelberg、Hong 和 Qiu 在研究 s ( n, k ) 的 p-adic 估值方面取得了一些进展。在本文中,利用作者最近获得的广义调和数和第 n 个伯努利数 B n 的华盛顿同余,以及作者最近获得的第 m 个第一类斯特林数的性质,我们得出了一个精确的表达式或更低的表达式。绑定在 vp ( s ( ap, k )) 上,a 和 k 是整数,使得 $$1\le a\le p-1$$ 1 ≤ a ≤ p - 1 和 $$1\le k\le ap$$ 1 ≤ k ≤ ap 。这推断对于任何正则素数 $$p\ge 7$$ p ≥ 7 和任意整数 a 和 k 以及 $$5\le a\le p-1$$ 5 ≤ a ≤ p - 1 和 $$a- 2\le k\le ap-1$$ a - 2 ≤ k ≤ ap - 1 ,有 $$v_{p}(H(ap-1,k)) < -\frac{\log{(ap- 1)}}{2\log p}$$ vp ( H ( ap - 1 , k ) ) < - log ( ap - 1 ) 2 log p with $$H(ap-1, k)$$ H ( ap - 1 , k ) 是 $$1, \frac{1}{2}, \ldots , \frac{1}{ap-1}$$ 1 , 1 2 , ... , 1 ap 的第 k 个初等对称函数- 1。这部分支持了莱昂内蒂和桑娜的猜想。我们还展示了 $$v_p(s(ap^{n},ap^{n}-k))$$vp (s (apn, apn - k)) 的结果,从中可以推导出在特定条件下的结果,对于任何质数 $$p\ge 5$$ p ≥ 5 ,任何奇数 $$k\ge 3$$ k ≥ 3 和任何足够大的整数 n ,如果 $$(a,p)=1$$ ( a , p ) = 1 ,然后 $$v_p(s(ap^{n+1},ap^{n+1}-k))=v_p(s(ap^{n}, ap^{n}-k))+2$$vp(s(apn+1,apn+1-k))=vp(s(apn,apn-k))+2。它部分证实了 Lengyel 的猜想。
更新日期:2020-05-13
down
wechat
bug