当前位置: X-MOL 学术Rev. Environ. Sci. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Torrefaction: a sustainable method for transforming of agri-wastes to high energy density solids (biocoal)
Reviews in Environmental Science and Bio/Technology ( IF 8.6 ) Pub Date : 2020-05-13 , DOI: 10.1007/s11157-020-09532-2
Sushant Negi , Gaurav Jaswal , Kali Dass , Koushik Mazumder , Sasikumar Elumalai , Joy K. Roy

The depletion of fossil fuel reserves and greenhouse gas emissions led to limit the use of fossil fuels, including natural gas, coal, or petroleum, and demand a clean and sustainable source of energy. Many efforts are being made by the researchers to address these issues through the use of natural renewable resources (or lignocellulosic biomass), such as agricultural wastes and forest residues as a cleaner source of energy. But its poor properties like low energy density, high moisture content, irregular shape and size, and heterogeneity make it difficult to use in its natural form. Torrefaction, a simple heat treatment procedure, is widely employed to the natural bioresources to improve its thermal properties to be used as an energy source in the domestic power plants. The quality of the resultant torrefied solids (the so-called biocoal) is depending on the settings of heating conditions under the absence of oxygen, which can be improved by selecting and adjusting the processing conditions precisely. Typically, the process brings down the moisture content up to < 3 wt%, and increases the grinding energy up to 90%. Mainly, the calorific value and fixed carbon content of torrefied biomass increase by roughly 15–25 wt%, which makes it more appealing than non-torrefied biomass. The review emphasizes the available biomass torrefaction technologies, and it’s potential in the field of bioenergy generations. It also covers few case studies of biomass torrefaction and its application in the power generation sectors.



中文翻译:

烘焙:将农业废料转化为高能量密度固体(生物煤)的可持续方法

化石燃料储备和温室气体排放的枯竭导致限制了对包括天然气,煤炭或石油在内的化石燃料的使用,并需要清洁和可持续的能源。研究人员正在通过使用自然可再生资源(或木质纤维素生物质)来解决这些问题,包括农业废弃物和森林残留物作为更清洁的能源。但是它的低能量密度,高水分含量,不规则形状和尺寸以及异质性等特性使其难以以天然形式使用。焙烤是一种简单的热处理程序,已广泛应用于天然生物资源,以改善其热性能,以用作家庭发电厂的能源。所得的焙烧固体(所谓的生物煤)的质量取决于在没有氧气的情况下的加热条件设置,可以通过精确选择和调整加工条件来提高质量。通常,该过程将水分含量降低到<3 wt%,并将磨碎能量提高到90%。主要是,烘焙过的生物质的热值和固定碳含量增加了约15–25 wt%,这使其比未烘焙过的生物质更具吸引力。审查强调了可用的生物质干法技术及其在生物能源发电领域的潜力。它还涵盖了很少的生物质焙烧及其在发电行业中的应用的案例研究。可以通过精确选择和调整处理条件来改进。通常,该过程将水分含量降低到<3 wt%,并将磨碎能量提高到90%。主要是,烘焙过的生物质的热值和固定碳含量增加了约15–25 wt%,这使其比未烘焙过的生物质更具吸引力。审查强调了可用的生物质干法技术及其在生物能源发电领域的潜力。它还涵盖了很少的生物质焙烧及其在发电行业中的应用的案例研究。可以通过精确选择和调整处理条件来改进。通常,该过程将水分含量降低到<3 wt%,并将磨碎能量提高到90%。主要是,烘焙过的生物质的热值和固定碳含量增加了约15–25 wt%,这使其比未烘焙过的生物质更具吸引力。审查强调了可用的生物质干法技术及其在生物能源发电领域的潜力。它还涵盖了很少的生物质焙烧及其在发电行业中的应用的案例研究。烘焙过的生物质的热值和固定碳含量增加了约15–25 wt%,这使其比未烘焙过的生物质更具吸引力。审查强调了可用的生物质干法技术及其在生物能源发电领域的潜力。它还涵盖了很少的生物质焙烧及其在发电行业中的应用的案例研究。烘焙过的生物质的热值和固定碳含量增加了约15–25 wt%,这使其比未烘焙过的生物质更具吸引力。审查强调了可用的生物质干法技术及其在生物能源发电领域的潜力。它还涵盖了很少的生物质焙烧及其在发电行业中的应用的案例研究。

更新日期:2020-05-13
down
wechat
bug