当前位置: X-MOL 学术Proc. Steklov Inst. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stabilizers of Vertices of Graphs with Primitive Automorphism Groups and a Strong Version of the Sims Conjecture. IV
Proceedings of the Steklov Institute of Mathematics ( IF 0.4 ) Pub Date : 2020-03-22 , DOI: 10.1134/s008154381907006x
A. S. Kondrat’ev , V. I. Trofimov

This is the fourth in a series of papers whose results imply the validity of a strong version of the Sims conjecture on finite primitive permutation groups. In this paper, the case of primitive groups with a simple socle of orthogonal Lie type and nonparabolic point stabilizer is considered. Let G be a finite group, and let M1 and M2 be distinct conjugate maximal subgroups of G. For any i ∈ ℕ, we define inductively subgroups (M1, M2)i and (M2, M1)i of M1M2, which will be called the ith mutual cores of M1 with respect to M2 and of M2 with respect to M1, respectively. Put \({\left( {{M_1},\,{M_2}} \right)^1} = {\left( {{M_1} \cap {M_2}} \right)_{{M_1}}}\) and \({\left( {{M_2},\,{M_1}} \right)^1} = {\left( {{M_1} \cap {M_2}} \right)_{{M_2}}}\). For i ∈ ℕ, assuming that (M1, M2)i and (M2, M1)i are already defined, put \({\left( {{M_1},{M_2}} \right)^{i + 1}} = {\left( {{{\left( {{M_1},\,{M_2}} \right)}^i} \cap {{\left( {{M_2},{M_1}} \right)}^i}} \right)_{{M_1}}}\) and \({\left( {{M_2},{M_1}} \right)^{i + 1}} = {\left( {{{\left( {{M_1},\,{M_2}} \right)}^i} \cap {{\left( {{M_2},{M_1}} \right)}^i}} \right)_{M2}}\). We are interested in the case where (M1)G = (M2)G = 1 and 1 < ∣(M1, M2)2 ∣ ≤ ∣(M2, M1)2∣. The set of all such triples (G, M1, M2) is denoted by Π. We consider triples from Π up to the following equivalence: triples (G, M1, M2) and (G′, \(M_1^\prime \), \(M_2^\prime \)) from Π are equivalent if there exists an isomorphism of G onto G′ mapping M1 onto \(M_1^\prime \) and M2 onto \(M_2^\prime \). In the present paper, the following theorem is proved.Theorem. Suppose that (G, M1, M2) ∈ Π, L = Soc(G) is a simple orthogonal group of dimension ≥ 7, and M1L is a nonparabolic subgroup of L. Then\(L \cong O_8^ + \left( r \right)\), where r is an odd prime, (M1, M2)3 = (M2, M1)3 = 1, and one of the following holds(a) r ≡ ±1 (mod 8), G is isomorphic to\(O_8^ + \left( r \right)\,:\;\mathbb{Z}_3\)or\(O_8^ + \left( r \right)\,\;:\;\>{S_3}\), (M1, M2)2 = Z (O2(M1)) and (M2, M1)2 = Z(O2(M2)) are elementary abelian groups of order 23, (M1, M2)1 = O2(M1) and (M2, M1)1 = O2(M2) are special groups of order 29, the group M1/O2(M1) is isomorphic to L3(2) × ℤ3or L3(2) × S3, respectively, and M1M2is a Sylow 2-subgroup of M1(b) r ≤ 5, the group G/L either contains Outdiag(L) or is isomorphic to the group4, (M1, M2)2 = Z(O2(M1L)) and (M2, M1)2 = Z(O2(M2L)) are elementary abelian groups of order 22, (M1, M2)1 = [O2(M1L), O2(M1L)] and (M2, M1)1 = [O2 (M2L), O2(M2L)] are elementary abelian groups of order 25, O2(M1L)/[O2(M1L), O2(M1L)] is an elementary abelian group of order 26, the group (M1L)/O2(M1L) is isomorphic to the group S3, ∣M1: M1M2∣ = 24, ∣M1M2L∣ = 211, and an element of order 3 from M1M2 (for G/LA4or G/LS4) induces on the group L its standard graph automorphism.In any of cases (a) and (b), the triples (G, M1, M2) exist and form one equivalence class.

中文翻译:

具有原始自同构群和Sims猜想的强版本的图的顶点的稳定器。IV

这是一系列论文中的第四篇,其结果暗示了有限元原始置换组上Sims猜想的强版本的有效性。在本文中,考虑了具有正交Lie型简单底端和非抛物线点稳定器的原始群的情况。令G为有限群,令M 1M 2G的不同共轭最大子群。对于任何∈ℕ,我们感应定义子组(中号1中号2和(中号2中号1中号1中号2,这将被称为的个相互芯中号1对于中号2和的中号2相对于中号1分别。将\({\ left({{M_1},\,{M_2}} \ right)^ 1} = {\ left({{M_1} \ cap {M_2}} \ right)_ {{M_1}}} \\ )\({\ left({{M_2},\,{M_1}} \ right)^ 1} = {\ left({{M_1} \ cap {M_2}} \ right)_ {{M_2}}} \)。对于∈ℕ,假设(中号1中号2和(中号2中号1已经定义好了,把\({\ left({{M_1},{M_2}} \ right)^ {i + 1}} = {\ left({{{\ left({{M_1},\,{ M_2}} \ right)} ^ i} \ cap {{\ left({{M_2},{M_1}} \ right)} ^ i}} \ right)_ {{M_1}}} \)\({ \ left({{M_2},{M_1}} \ right)^ {i + 1}} = {\ left({{{\ left({{M_1},\,{M_2}} \ right)} ^ i } \ cap {{\ left({{M_2},{M_1}} \ right)} ^ i}} \ right)_ {M2}} \)。我们对( M 1 G =( M 2 G = 1且1 <∣( M 1 M 2 2 ∣≤∣( M 2 M 1 2的情况感兴趣∣。所有这些三元组(GM 1M 2)的集合由Π表示。我们考虑从up到以下等价的三元组:如果存在,则从triple的三元组(GM 1M 2)和(G ',\(M_1 ^ \ prime \)\(M_2 ^ \ prime \))等价在G '上存在G的同构,将M 1映射到\(M_1 ^ \ prime \)M 2映射到\(M_2 ^ \ prime \)。本文证明了以下定理。定理假设g ^中号1中号2)∈Π,大号= SOC(ģ是尺寸的简单正交基≥7,并且M 1L是L的亚组nonparabolic然后\(L \琮O_8 ^ + \ left(r \ right)\)其中r是一个奇数素数,(M 1M 23 =(M 2M 13 = 1,并且下列条件之一保持(a)r≡±1(mod 8),G同构为\(O_8 ^ + \ left(r \ right)\,:\; \ mathbb {Z} _3 \)\(O_8 ^ + \ left(r \ right) \,\;:\; \> {S_3} \),(M 1M 22 = ZO 2M 1))M 2M 12 = ZO 2M 2))2 3,(M 1M 21 = Ö 2中号1中号2中号11 = Ö 2中号2是为了特殊群体2 9M组1 / Ò 2中号1是同构为L 3( 2)×ℤ 3或L 3(2)× s ^ 3分别和M 1中号2是西洛2- M的子组1(b)中ř ≤5,基团G / L或者包含Outdiag(大号或同构于组4,(中号1中号22 = ŽÔ 2中号1大号))中号2中号12 = žÔ 2中号2大号))是为了初等阿贝尔群2 2,(中号1中号21 = [ Ò 2中号1大号),Ô 2中号1大号)]中号2中号11 = [ Ò 2中号2大号),Ô 2中号2大号)]是为了初等阿贝尔群2 5Ô 2中号1大号)/ [ Ô 2中号1大号),Ô 2中号1大号)]是顺序的一个初等阿贝尔群2 6基团中号1大号)/ Ô 2中号1大号是同构的基团S 3,|中号1中号1中号2 | = 24,|中号1中号2大号| = 2 11以及一个的顺序元件3的M 1中号2对于G /大号4或G /大号小号4在L组上诱导其标准图自同构在任何情况(a)(b)中,三元组G,M 1M 2存在并形成一个等价类
更新日期:2020-03-22
down
wechat
bug