当前位置: X-MOL 学术Funct. Anal. Its Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Preservation of the Unconditional Basis Property under Non-Self-Adjoint Perturbations of Self-Adjoint Operators
Functional Analysis and Its Applications ( IF 0.6 ) Pub Date : 2019-10-15 , DOI: 10.1134/s0016266319030043
A. K. Motovilov , A. A. Shkalikov

Let T be a self-adjoint operator on a Hilbert space H with domain \(\mathscr{D}(T)\). Assume that the spectrum of T is contained in the union of disjoint intervals Δk = [α2k−1,α2k], k ∈ ℤ, the lengths of the gaps between which satisfy the inequalities$${\alpha _{2k + 1}} - {\alpha _{2k}}\geqslant b{\rm{|}}{\alpha _{2k + 1}} + {\alpha _{2k}}{{\rm{|}}^p}\;\;\;\;{\rm{for}}\;{\rm{some}}\;\;{\rm{b}} > 0,\;p \in [0,1).$$Suppose that a linear operator B is p-subordinate to T, i.e.,$$\mathscr{D}(B) \supset \mathscr{D}(T)\;\;\;{\rm{and}}\;\;\;\left\| {Bx} \right\|\leqslant b'{\left\| {Tx} \right\|^p}{\left\| x \right\|^{1 - p}} + M\left\| x \right\|\;\;\;\;{\rm{for}}\;{\rm{all}}\, x \in \mathscr{D}(T)$$with some b′ > 0 and M ⩾ 0. Then, in the case of b > b′, for large |k| ⩾ N, the vertical lines γk = {∈ ℂ | Re λ = (α2k + α2k+1)/2} lie in the resolvent set of the perturbed operator A = T + B. Let Qk be the Riesz projections associated with the parts of the spectrum of A lying between the lines γk and γk+1 for |k| ⩾ N, and let Q be the Riesz projection onto the bounded remainder of the spectrum of A. The main result is as follows: The system {Qk(H)}|k|⩾Nof invariant subspaces together with the invariant subspace Q(H) forms an unconditional basis of subspaces in the space H. We prove also a generalization of this theorem to the case where any gap (α2k,α2k+1), k ∈ ℤ, may contain a finite number of eigenvalues of T.

中文翻译:

自伴算子的非自伴扰动下无条件基性的保存

T为Hilbert空间H上域\(\ mathscr {D}(T)\)的自伴随算子。假设的频谱Ť被包含在不相交间隔Δ的联合ķ = [ α 2 ķ -1α 2 ķ ] ķ ∈ℤ,间隙的长度在它们之间满足不等式$$ {\阿尔法_ { 2k + 1}}-{\ alpha _ {2k}} \ geqslant b {\ rm {|}} {\ alpha _ {2k + 1}} + {\ alpha _ {2k}} {{\ rm {|} } ^ p} \; \; \; \; {\ rm {for}} \; {\ rm {some}} \; \; {\ rm {b}}> 0,\; p \ in [0, 1)。$$假设线性算子Bp-从属于T,即$$ \ mathscr {D}(B)\ supset \ mathscr {D}(T)\; \; \; {\ rm {and}} \; \; \; \ left \ | {Bx} \ right \ | \ leqslant b'{\ left \ | {Tx} \ right \ | ^ p} {\ left \ | x \ right \ | ^ {1-p}} + M \ left \ | x \ right \ | \; \; \; \; \; {\ rm {for}} \; {\ rm {all}} \,x \ in \ mathscr {D}(T)$$,b' > 0和中号⩾0。然后,在的情况下,b> b' ,对于大| k | ⩾ Ñ,竖直线γ ķ = {∈ℂ| 再λ =(α 2 ķ + α 2 ķ 1)/ 2}横亘在解集扰动算子的= Ť +。让Q ķ与的光谱的各部分相关联的中Riesz突起行间位于γ ķγ ķ 1为| k | ⩾ Ñ,并让Q是中Riesz投影到的频谱的有界剩余。主要结果是,如下所示:该系统{ Q ķħ)} | K |⩾ Ñ不变子空间与不变子空间Q一起的ħ形成的子空间中的空间H.无条件地我们还证明这个定理的推广到其中的任何间隙的情况下(α 2 ķα 2 ķ 1),ķ∈ ℤ,可以含有的本征值的有限数量的Ť
更新日期:2019-10-15
down
wechat
bug