当前位置: X-MOL 学术Optim. Methods Softw. › 论文详情
Modified Popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems
Optimization Methods & Software ( IF 1.431 ) Pub Date : 2020-03-05 , DOI: 10.1080/10556788.2020.1734805
Habib ur Rehman; Poom Kumam; Yeol Je Cho; Yusuf I. Suleiman; Wiyada Kumam

This paper proposes two algorithms that are based on a subgradient and an inertial scheme with the explicit iterative method for solving pseudomonotone equilibrium problems. The weak convergence of both algorithms is well-established under standard assumptions on the cost bifunction. The advantage of these algorithms is that they did not require any line search procedure or any knowledge about bifunction Lipschitz-type constants for step-size evaluation. A practical explanation of this is that they use a sequence of step-size that are revised at each iteration based on some previous iteration. For a numerical experiment, we consider a well-known Nash-Cournot equilibrium model of electricity markets and also other test problems to assist the well-established convergence results and be able to see that our proposed algorithms have a competitive advantage over the time of execution and the number of iterations.
更新日期:2020-03-05

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug