当前位置: X-MOL 学术Combust. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
TimeScale Analysis, Numerical Simulation and Validation of Flame Acceleration, and DDT in Hydrogen–Air Mixtures
Combustion Science and Technology ( IF 1.7 ) Pub Date : 2020-03-05 , DOI: 10.1080/00102202.2020.1732363
Aditya Karanam 1 , Sunil Ganju 2 , Jayanta Chattopadhyay 1
Affiliation  

ABSTRACT

Flame Acceleration (FA) and Deflagration to Detonation Transition (DDT) are known risks in scenarios involving accidental release and combustion of hydrogen in nuclear reactors. In the present work, chemical timescale and Borghi diagram analysis of hydrogen combustion have been presented. Based on these, a map of the flame propagation in the GraVent shock tube channel has been constructed; and it has been established that the propagation corresponds to the flamelet regime. Subsequently, CFD framework applicable to the flamelet regime such as the geometric approach with turbulent flame closure has been utilized to study deflagrations, FA and DDT. Such methods allow for the computation of pressure transients and flame propagation characteristics with a relatively coarse grid, thereby enabling a balance between computational time and accuracy. Moreover, specific sub-models based on Lewis number and tuned to lean combustion at high pressures have been implemented to further improve the accuracy of the numerical results. All numerical work has been carried out using the open-source numerical platform OpenFOAM. Several numerical simulations with uniform and transversely stratified initial distribution have been carried out and validated with experimental data. In the stratified case, an asymmetric flame front has been observed and is identified to be a key parameter leading to strong FA. Detailed analysis shows that several pressure pulses and shock complexes are formed upstream of the flame. The ensuing shock–flame interaction augments the flame speed ultimately resulting in DDT. Comparative simulations with uniform distribution also show strong FA but DDT does not take place.



中文翻译:

氢-空气混合物中火焰加速和滴滴涕的时间尺度分析、数值模拟和验证

摘要

在涉及氢在核反应堆中意外释放和燃烧的场景中,火焰加速 (FA) 和爆燃到爆轰转变 (DDT) 是已知的风险。在目前的工作中,已经提出了氢燃烧的化学时间尺度和 Borghi 图分析。在此基础上,构建了 GraVent 激波管通道中的火焰传播图;并且已经确定传播对应于小火焰制度。随后,适用于火焰状态的 CFD 框架,例如具有湍流火焰闭合的几何方法,已被用于研究爆燃、FA 和 DDT。此类方法允许使用相对粗糙的网格计算压力瞬变和火焰传播特性,从而实现计算时间和精度之间的平衡。此外,基于刘易斯数并调整为高压稀薄燃烧的特定子模型已被实施,以进一步提高数值结果的准确性。所有数值工作都是使用开源数值平台 OpenFOAM 进行的。已经进行了几个具有均匀和横向分层初始分布的数值模拟,并用实验数据进行了验证。在分层情况下,已观察到不对称的火焰锋,并被确定为导致强 FA 的关键参数。详细分析表明,在火焰上游形成了几个压力脉冲和冲击复合波。随之而来的冲击-火焰相互作用会增加火焰速度,最终导致 DDT。均匀分布的比较模拟也显示出很强的 FA,但 DDT 没有发生。基于刘易斯数并调整为高压稀薄燃烧的特定子模型已经实施,以进一步提高数值结果的准确性。所有数值工作都是使用开源数值平台 OpenFOAM 进行的。已经进行了几个具有均匀和横向分层初始分布的数值模拟,并用实验数据进行了验证。在分层情况下,已观察到不对称的火焰锋,并被确定为导致强 FA 的关键参数。详细分析表明,在火焰上游形成了几个压力脉冲和冲击复合波。随之而来的冲击-火焰相互作用会增加火焰速度,最终导致 DDT。均匀分布的比较模拟也显示出很强的 FA,但 DDT 没有发生。基于刘易斯数并调整为高压稀薄燃烧的特定子模型已经实施,以进一步提高数值结果的准确性。所有数值工作都是使用开源数值平台 OpenFOAM 进行的。已经进行了几个具有均匀和横向分层初始分布的数值模拟,并用实验数据进行了验证。在分层情况下,已观察到不对称的火焰锋,并被确定为导致强 FA 的关键参数。详细分析表明,在火焰上游形成了几个压力脉冲和冲击复合波。随之而来的冲击-火焰相互作用会增加火焰速度,最终导致 DDT。均匀分布的比较模拟也显示出很强的 FA,但 DDT 没有发生。

更新日期:2020-03-05
down
wechat
bug