当前位置: X-MOL 学术Heat Transf. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heat Transfer Improvement in a Wavy Vortex Generator Miniature Channel Using Nanofluids
Heat Transfer Engineering ( IF 1.6 ) Pub Date : 2020-01-31 , DOI: 10.1080/01457632.2019.1703080
Elham Hosseinirad 1 , Faramarz Hormozi 1
Affiliation  

Abstract In this article, the thermal and frictional characteristics of interrupted wavy mini-channel are experimentally investigated as the wavy vortex generator miniature channel (WVGMC) using SiO2–H2O and Al2O3–H2O nanofluids. Its performance characteristics are compared to the common configurations of cooling mini-channels, that is, the wavy mini-channel (WMC), straight mini-channel (SMC), and the miniature channel. The effect of the geometric shape of mini-channels, mass flow rate, coolant fluid type, and the concentration of nanoparticles on the thermal and hydraulic performance inside the different geometries are investigated. The range of Reynolds number and weight fraction of nanoparticles are considered to be 500–2000 and 0–0.3 wt%, respectively. The results show that the highest Nusselt number and overall performance are obtained in the WVGMC for all coolant fluids. The Nusselt number is improved about 27.5%, 22%, and 26.5% for the distilled water, SiO2–H2O nanofluid, and Al2O3–H2O nanofluid in the WVGMC compared to WMC, respectively. Also, the friction factor is increased in the WVGMC; for example, this enhancement rate is about 8.2% for the water flow compared to WMC. The SMC show the least Nusselt number for both nanofluids. In all geometries, the thermal performance is increased using the nanofluids than that for the deionized water. Thus, the WVGMC is suggested as an efficient geometry to design the cooling mini-channels.

中文翻译:

使用纳米流体改进波浪涡流发生器微型通道的传热

摘要 在本文中,使用 SiO2–H2O 和 Al2O3–H2O 纳米流体作为波状涡流发生器微型通道 (WVGMC) 对间断波浪微通道的热和摩擦特性进行了实验研究。其性能特点与冷却微型通道的常见配置进行比较,即波浪微型通道(WMC)、直型微型通道(SMC)和微型通道。研究了微型通道的几何形状、质量流量、冷却液类型和纳米颗粒浓度对不同几何形状内的热和水力性能的影响。纳米粒子的雷诺数和重量分数的范围分别被认为是 500-2000 和 0-0.3 wt%。结果表明,对于所有冷却液,在 WVGMC 中获得了最高的努塞尔数和整体性能。与 WMC 相比,WVGMC 中蒸馏水、SiO2-H2O 纳米流体和 Al2O3-H2O 纳米流体的努塞尔数分别提高了约 27.5%、22% 和 26.5%。此外,WVGMC 中的摩擦系数增加;例如,与 WMC 相比,水流的这种增强率约为 8.2%。SMC 显示了两种纳米流体的最小努塞尔数。在所有几何形状中,使用纳米流体的热性能比使用去离子水的热性能有所提高。因此,WVGMC 被建议作为设计冷却微型通道的有效几何形状。和 WVGMC 中的 Al2O3–H2O 纳米流体分别与 WMC 相比。此外,WVGMC 中的摩擦系数增加;例如,与 WMC 相比,水流的这种增强率约为 8.2%。SMC 显示了两种纳米流体的最小努塞尔数。在所有几何形状中,使用纳米流体的热性能比使用去离子水的热性能有所提高。因此,WVGMC 被建议作为设计冷却微型通道的有效几何形状。和 WVGMC 中的 Al2O3–H2O 纳米流体分别与 WMC 相比。此外,WVGMC 中的摩擦系数增加;例如,与 WMC 相比,水流的这种增强率约为 8.2%。SMC 显示了两种纳米流体的最小努塞尔数。在所有几何形状中,使用纳米流体的热性能比使用去离子水的热性能有所提高。因此,WVGMC 被建议作为设计冷却微型通道的有效几何形状。
更新日期:2020-01-31
down
wechat
bug