当前位置: X-MOL 学术Combust. Theory Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CFD simulations of hydrogen deflagration in slow and fast combustion regime
Combustion Theory and Modelling ( IF 1.9 ) Pub Date : 2020-02-12 , DOI: 10.1080/13647830.2020.1724336
Robert Cherbański 1 , Eugeniusz Molga 1
Affiliation  

This paper presents CFD modelling of hydrogen-air deflagrations. The proposed mathematical models are validated with the experiments provided to SARNET2 (Severe Accident Research NETwork of Excellence 2) project [A. Bentaib, A. Bleyer, N. Chaumeix, B. Schramm, P. Kostka, M. Movahed, H.S. Kang and M. Povilaitis, Final results of the SARNET Hydrogen deflagration Benchmark Effect of turbulence on flame acceleration. (2012), pp. 1–15; A. Bentaib, A. Bleyer, N. Meynet, N. Chaumeix, B. Schramm, M. Höhne, P. Kostka, M. Movahed, S. Worapittayaporn, T. Brähler, H. Seok-Kang, M. Povilaitis, I. Kljenak and P. Sathiah, SARNET hydrogen deflagration benchmarks: Main outcomes and conclusions. Ann. Nucl. Energy 74 (2014), pp. 143–152. doi:10.1016/j.anucene.2014.07.012]. The goal of SARNET2 project was to investigate the effect of blockage ratio on flame propagation and pressure evolution during deflagration of a lean mixture of hydrogen and air. Three blockage ratios were tested: BR = 0, 0.33 and 0.63. The experiments were carried out in the ENACCEF facility. The proposed mathematical models test the effect of turbulence models and radiative heat losses on flame front position and absolute pressure in the testing facility. A good agreement between the calculated and experimental results for the three BRs is found for the SST k-ω model alone and in combination with the γ transition model when radiative heat losses are accounted for in the modelling. In addition, an unstable tulip flame is evidenced in our CFD simulations what corroborates previous reports on premixed combustion in a closed tube.

中文翻译:

慢速和快速燃烧状态下氢气爆燃的 CFD 模拟

本文介绍了氢-空气爆燃的 CFD 建模。所提出的数学模型通过提供给 SARNET2(严重事故研究网络卓越 2)项目的实验进行验证 [A. Bentaib、A. Bleyer、N. Chaumeix、B. Schramm、P. Kostka、M. Movahed、HS Kang 和 M. Povilaitis,SARNET 氢爆燃基准测试的最终结果湍流对火焰加速的影响。(2012),第 1-15 页;A. Bentaib、A. Bleyer、N. Meynet、N. Chaumeix、B. Schramm、M. Höhne、P. Kostka、M. Movahed、S. Worapittayaporn、T. Brähler、H. Seok-Kang、M. Povilaitis、 I. Kljenak 和 P. Sathiah,SARNET 氢爆燃基准:主要结果和结论。安。核。能源 74 (2014),第 143-152 页。doi:10.1016/j.anucene.2014.07.012]。SARNET2 项目的目标是研究阻塞率对稀薄氢气和空气混合物爆燃过程中火焰传播和压力演变的影响。测试了三个阻塞率:BR = 0、0.33 和 0.63。实验在 ENACCEF 设施中进行。所提出的数学模型测试了湍流模型和辐射热损失对测试设施中火焰前沿位置和绝对压力的影响。当模型中考虑了辐射热损失时,单独的 SST k-ω 模型和结合 γ 过渡模型的三个 BR 的计算结果和实验结果之间有很好的一致性。此外,我们的 CFD 模拟证实了不稳定的郁金香火焰,这证实了之前关于封闭管中预混燃烧的报告。
更新日期:2020-02-12
down
wechat
bug