当前位置: X-MOL 学术Combust. Theory Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational modelling of multi-material energetic materials and systems
Combustion Theory and Modelling ( IF 1.9 ) Pub Date : 2019-11-15 , DOI: 10.1080/13647830.2019.1689299
Alberto M. Hernández 1 , D. Scott Stewart 1, 2
Affiliation  

ABSTRACT In this paper, we present a systematic roadmap for developing a robust and parallel multi-material reactive hydrodynamic solver that integrates historically stable algorithms with new and current modern methods to solve explosive system design problems. The Ghost Fluid Method and Riemann solvers were used to enforce appropriate interface boundary conditions. Improved performance in terms of computational work and convergence properties was achieved by modifying a local node sorting strategy that decouples ghost nodes, allowing us to set material boundary conditions via an explicit procedure, removing the need to solve a coupled system of equations numerically. The locality and explicit nature of the node sorting concept allows for greater levels of parallelism and lower computational cost when populating ghost nodes. Non-linear numerical issues endemic to the use of real Equations of State in hydro-codes were resolved by using more thermodynamically consistent forms allowing us to accurately resolve large density gradients associated with high energy detonation problems at material interfaces. Pre-computed volume tables were implemented adding to the robustness of the solver base.

中文翻译:

多材料含能材料和系统的计算建模

摘要在本文中,我们提出了一个系统的路线图,用于开发一个强大的并行多材料反应流体动力学求解器,该求解器将历史稳定的算法与新的和当前的现代方法相结合,以解决爆炸系统设计问题。Ghost Fluid Method 和 Riemann 求解器用于强制执行适当的界面边界条件。通过修改将幽灵节点解耦的局部节点排序策略,可以提高计算工作和收敛特性方面的性能,允许我们通过显式程序设置材料边界条件,从而无需对耦合方程组进行数值求解。节点排序概念的局部性和显式特性允许在填充幽灵节点时实现更高级别的并行性和更低的计算成本。通过使用更热力学一致的形式解决了在水力规范中使用实状态方程所特有的非线性数值问题,使我们能够准确地解决与材料界面处的高能爆炸问题相关的大密度梯度。实现了预先计算的体积表,增加了求解器的稳健性。
更新日期:2019-11-15
down
wechat
bug