当前位置: X-MOL 学术Chem. Eng. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis and characterization of conducting polypyrrole/bentonite nanocomposites and in-situ oxidative polymerization of pyrrole: adsorption of 4-nitrophenol by polypyrrole/bentonite nanocomposite
Chemical Engineering Communications ( IF 1.9 ) Pub Date : 2020-04-06 , DOI: 10.1080/00986445.2020.1746653
Hatice Karaer Yağmur 1
Affiliation  

Abstract Oxidative polymerization of pyrrole in aqueous medium was used for the preparation of the Polypyrrole/Bentonite nanocomposites. Iron chloride hexahydrate was preferred as the oxidant. The nanocomposites were characterized by using several techniques such as Fourier transform infrared spectroscopy (ATR-FT-IR), X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), thermogravimetric analysis/differential thermal analysis (TGA-DTA), differential scanning calorimetry (DSC) and dynamic light scattering (DLS). X-ray diffraction analysis indicated that the polypyrrole was intercalated into the bentonite layers. The results of FT-IR and XRD spectroscopy proved that the structure was a composite. The conductivity of composites was measured using four-point techniques. TGA was used to analyze the thermal stability of the nanocomposites. Moreover, the adsorption of 4-nitrophenol (4NP) by the composite from aqueous solution was studied both thermodynamically and kinetically. Equilibrium data were acquired from adsorption of 4NP solutions that have the initial concentrations from 25 to 300 mg L−1 by adsorption of the nanocomposite at different temperatures (25, 35 and 45 °C) according to Langmuir and Freundlich adsorption isotherms. Qmax (maximum adsorption capacity) was defined as 96 mg g−1 via the Langmuir isotherm model. The parameters of thermodynamic (ΔHo, ΔGo and ΔSo) were calculated as well, and adsorption process was determined to be exothermic.

中文翻译:

导电聚吡咯/膨润土纳米复合材料的合成与表征及吡咯的原位氧化聚合:聚吡咯/膨润土纳米复合材料对4-硝基苯酚的吸附

摘要 利用吡咯在水性介质中的氧化聚合制备聚吡咯/膨润土纳米复合材料。优选氯化铁六水合物作为氧化剂。通过使用傅里叶变换红外光谱 (ATR-FT-IR)、X 射线衍射 (XRD)、扫描电子显微镜-能量色散 X 射线分析 (SEM-EDX)、热重分析/差示法等多种技术对纳米复合材料进行表征。热分析 (TGA-DTA)、差示扫描量热法 (DSC) 和动态光散射 (DLS)。X 射线衍射分析表明聚吡咯嵌入到膨润土层中。FT-IR和XRD光谱结果证明该结构为复合材料。使用四点技术测量复合材料的电导率。TGA用于分析纳米复合材料的热稳定性。此外,从热力学和动力学两方面研究了复合材料从水溶液中吸附 4-硝基苯酚 (4NP)。根据 Langmuir 和 Freundlich 吸附等温线,通过在不同温度(25、35 和 45 °C)下吸附纳米复合材料,从初始浓度为 25 至 300 mg L-1 的 4NP 溶液中获得平衡数据。Qmax(最大吸附容量)通过朗缪尔等温线模型定义为 96 mg g-1。还计算了热力学参数(ΔHo、ΔGo 和 ΔSo),确定吸附过程为放热过程。从热力学和动力学两方面研究了复合材料从水溶液中吸附 4-硝基苯酚 (4NP)。根据 Langmuir 和 Freundlich 吸附等温线,通过在不同温度(25、35 和 45 °C)下吸附纳米复合材料,从初始浓度为 25 至 300 mg L-1 的 4NP 溶液中获得平衡数据。Qmax(最大吸附容量)通过朗缪尔等温线模型定义为 96 mg g-1。还计算了热力学参数(ΔHo、ΔGo 和 ΔSo),确定吸附过程为放热过程。从热力学和动力学两方面研究了复合材料从水溶液中吸附 4-硝基苯酚 (4NP)。根据 Langmuir 和 Freundlich 吸附等温线,通过在不同温度(25、35 和 45 °C)下吸附纳米复合材料,从初始浓度为 25 至 300 mg L-1 的 4NP 溶液的吸附中获得平衡数据。Qmax(最大吸附容量)通过朗缪尔等温线模型定义为 96 mg g-1。还计算了热力学参数(ΔHo、ΔGo 和 ΔSo),确定吸附过程为放热过程。35 和 45 °C) 根据 Langmuir 和 Freundlich 吸附等温线。Qmax(最大吸附容量)通过朗缪尔等温线模型定义为 96 mg g-1。还计算了热力学参数(ΔHo、ΔGo 和 ΔSo),确定吸附过程为放热过程。35 和 45 °C) 根据 Langmuir 和 Freundlich 吸附等温线。Qmax(最大吸附容量)通过朗缪尔等温线模型定义为 96 mg g-1。还计算了热力学参数(ΔHo、ΔGo 和 ΔSo),确定吸附过程为放热过程。
更新日期:2020-04-06
down
wechat
bug