当前位置: X-MOL 学术Mach. Sci. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tool wear rate prediction in ultrasonic vibration-assisted milling
Machining Science and Technology ( IF 2.7 ) Pub Date : 2020-04-19 , DOI: 10.1080/10910344.2020.1752240
Yixuan Feng, Fu-Chuan Hsu, Yu-Ting Lu, Yu-Fu Lin, Chorng-Tyan Lin, Chiu-Feng Lin, Ying-Cheng Lu, Steven Y. Liang

Abstract In the current study, a predictive model on tool flank wear rate during ultrasonic vibration-assisted milling is proposed. One benefit of ultrasonic vibration is the frequent separation between tool and workpiece as the cutting time is reduced. In order to account for this effect, three types of tool–workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool center under feed movement and vibration. If the tool is moving away from workpiece, there is no contact. Type II criterion examines the position of tool center. If the tool center is far from the uncut workpiece surface, there is no contact even though the tool is getting closer. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If any criterion is satisfied, the tool flank wear rate is zero. Otherwise, the flank wear rate is predicted considering abrasion, adhesion and diffusion. The proposed predictive tool flank wear rate model is validated through comparison to experimental measurements on SKD 61 steel with uncoated carbide tool. The proposed predictive model is able to match the measured tool flank wear rate with high accuracy of 10.9% average percentage error. In addition, based on the sensitivity analysis, smaller axial depth of milling, larger feed per tooth or higher cutting speed will result in higher flank wear rate. And the effect of vibration parameters is less significant.

中文翻译:

超声振动辅助铣削刀具磨损率预测

摘要 在目前的研究中,提出了一种超声振动辅助铣削刀具后刀面磨损率的预测模型。超声波振动的好处之一是随着切削时间的减少,刀具和工件之间的频繁分离。为了考虑到这种影响,基于工具中心瞬时位置和速度检查了三种类型的工具-工件分离标准。I 类标准检查进给运动和振动下刀具中心的瞬时速度。如果刀具远离工件,则没有接触。II 类标准检查刀具中心的位置。如果刀具中心远离未切削工件表面,即使刀具越来越近也没有接触。III 类标准描述了由于振动导致当前刀具路径与先前刀具路径重叠而导致的较小切屑尺寸。如果满足任何标准,则刀具后刀面磨损率为零。否则,将考虑磨损、粘附和扩散来预测后刀面磨损率。通过与使用未涂层硬质合金刀具的 SKD 61 钢的实验测量值进行比较,验证了所提出的预测刀具后刀面磨损率模型。所提出的预测模型能够以 10.9% 的平均百分比误差的高精度匹配测量的刀具后刀面磨损率。此外,根据敏感性分析,较小的轴向铣削深度、较大的每齿进给量或较高的切削速度都会导致后刀面磨损率较高。并且振动参数的影响不太显着。如果满足任何标准,则刀具后刀面磨损率为零。否则,将考虑磨损、粘附和扩散来预测后刀面磨损率。通过与使用未涂层硬质合金刀具的 SKD 61 钢的实验测量值进行比较,验证了所提出的预测刀具后刀面磨损率模型。所提出的预测模型能够以 10.9% 的平均百分比误差的高精度匹配测量的刀具后刀面磨损率。此外,根据敏感性分析,较小的轴向铣削深度、较大的每齿进给量或较高的切削速度都会导致后刀面磨损率较高。并且振动参数的影响不太显着。如果满足任何标准,则刀具后刀面磨损率为零。否则,将考虑磨损、粘附和扩散来预测后刀面磨损率。通过与使用未涂层硬质合金刀具的 SKD 61 钢的实验测量值进行比较,验证了所提出的预测刀具后刀面磨损率模型。所提出的预测模型能够以 10.9% 的平均百分比误差的高精度匹配测量的刀具后刀面磨损率。此外,根据敏感性分析,较小的轴向铣削深度、较大的每齿进给量或较高的切削速度都会导致后刀面磨损率较高。并且振动参数的影响不太显着。通过与使用未涂层硬质合金刀具的 SKD 61 钢的实验测量值进行比较,验证了所提出的预测刀具后刀面磨损率模型。所提出的预测模型能够以 10.9% 的平均百分比误差的高精度匹配测量的刀具后刀面磨损率。此外,根据敏感性分析,较小的轴向铣削深度、较大的每齿进给量或较高的切削速度都会导致后刀面磨损率较高。并且振动参数的影响不太显着。通过与使用未涂层硬质合金刀具的 SKD 61 钢的实验测量值进行比较,验证了所提出的预测刀具后刀面磨损率模型。所提出的预测模型能够以 10.9% 的平均百分比误差的高精度匹配测量的刀具后刀面磨损率。此外,根据敏感性分析,较小的轴向铣削深度、较大的每齿进给量或较高的切削速度都会导致后刀面磨损率较高。并且振动参数的影响不太显着。更大的每齿进给量或更高的切削速度将导致更高的后刀面磨损率。并且振动参数的影响不太显着。更大的每齿进给量或更高的切削速度将导致更高的后刀面磨损率。并且振动参数的影响不太显着。
更新日期:2020-04-19
down
wechat
bug