当前位置: X-MOL 学术Mach. Sci. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal modeling of drilling process in titanium alloy (Ti-6Al-4V)
Machining Science and Technology ( IF 2.7 ) Pub Date : 2020-01-25 , DOI: 10.1080/10910344.2019.1698607
Ankit Kumar 1 , Rajneesh Bhardwaj 1 , Suhas S. Joshi 1
Affiliation  

Abstract In drilling in titanium alloys, heat trapped in a hole adversely affects tool life, hole surface quality and integrity. Therefore, modeling temperature distribution in drilling is vital for effective heat dissipation and improving quality of drilled surfaces. The existing numerical and finite element models consider only frictional heat, whereas the effect of shear heat generation and tertiary heat generation is neglected. In the present work, a comprehensive thermal model of the drilling process is developed by considering all heat generated in shear, friction and tertiary zones. The drill cutting edges are divided into a series of independent elementary cutting tools (ECT). The calculated heat flux loads are applied on an individual ECT in the finite element model to determine the temperature distribution and the maximum temperature around the cutting edge. The temperature in the drill was also measured experimentally with the help of an Infrared (IR) camera. The results of numerical simulations lie within the error of ∼8.75% when compared to the prior studies, and ∼5.41% when compared to our experimental work. The thermal model gives the temperature distribution, and the maximum temperature observed at the corner of cutting edge was 604.2°C at a cutting speed of 35 m/min.

中文翻译:

钛合金(Ti-6Al-4V)钻孔过程热建模

摘要 在钛合金钻孔中,孔中滞留的热量会对刀具寿命、孔表面质量和完整性产生不利影响。因此,在钻孔中模拟温度分布对于有效散热和提高钻孔表面质量至关重要。现有的数值和有限元模型只考虑摩擦热,而忽略了剪切热和三次热的影响。在目前的工作中,通过考虑剪切带、摩擦带和三次带中产生的所有热量,开发了钻井过程的综合热模型。钻头切削刃分为一系列独立的基本切削刀具 (ECT)。计算出的热流载荷应用于有限元模型中的单个 ECT,以确定温度分布和切削刃周围的最高温度。在红外 (IR) 相机的帮助下,还通过实验测量了钻头中的温度。与之前的研究相比,数值模拟的结果误差在 8.75% 以内,与我们的实验工作相比误差在 5.41% 以内。热模型给出了温度分布,在切削速度为 35 m/min 时,在切削刃的拐角处观察到的最高温度为 604.2°C。与我们的实验工作相比,为 41%。热模型给出了温度分布,在切削速度为 35 m/min 时,在切削刃的拐角处观察到的最高温度为 604.2°C。与我们的实验工作相比,为 41%。热模型给出了温度分布,在切削速度为 35 m/min 时,在切削刃的拐角处观察到的最高温度为 604.2°C。
更新日期:2020-01-25
down
wechat
bug