当前位置: X-MOL 学术Prog. Earth Planet. Sci. › 论文详情
Evaluation of geochemical records as a paleoenvironmental proxy in the hypercalcified demosponge Astrosclera willeyana
Progress in Earth and Planetary Science ( IF 2.508 ) Pub Date : 2020-05-12 , DOI: 10.1186/s40645-020-00329-z
Ryuji Asami, Akira Kinjo, Daiki Ohshiro, Tohru Naruse, Masaru Mizuyama, Ryu Uemura, Ryuichi Shinjo, Yuji Ise, Yoshihisa Fujita, Takashi Sakamaki

The geochemistry of the calcium carbonates of marine organisms is an excellent proxy for reconstruction of the paleoceanographic history. However, previous studies of hypercalcified demosponges (sclerosponges) are considerably fewer than those of corals, foraminifers, and bivalves. Here, we investigated stable oxygen (δ18O) and carbon (δ13C) isotopes and minor and trace element (Mg, Sr, Ba, Pb, and U) to Ca ratios of 36 living sclerosponges (Astrosclera willeyana) collected from Kume Island in the Ryukyu Islands, southwestern Japan, to evaluate the utility of geochemistry as a paleoenvironmental proxy. The δ18O, δ13C, and Sr/Ca deviations of the coevally precipitated skeleton were extremely small and almost constant at all skeletal portions, strongly suggesting that within-skeletal variations in the chemical components are negligibly small for non-symbiotic sclerosponges. Mean δ18O, δ13C, and Sr/Ca values (N = 36), falling within a quite narrow range, showed no significant evidence for intraspecific (inter-specimen) variations in the sclerosponges. The sclerosponges δ18O and δ13C were consistent with those of the aragonites precipitated in isotopic equilibrium with seawater at the growth site. The sclerosponge Sr/Ca was close to that of inorganically precipitated aragonite, and the estimated partition coefficient of 1.1 (almost unity) is identical to previously reported values for different species (Ceratoporella nicholsoni). Consequently, these results suggest that A. willeyana sclerosponge, having little vital effects on the geochemistry, is a robust indicator of paleocean environments (seawater δ18O, temperature, and dissolved inorganic carbon δ13C). Further, our evaluation study documents that sclerosponges living in deeper ocean environments can support the reconstruction of spatial and vertical paleoceanographic changes in conjunction with coral proxy records. The sclerosponge U/Ca showed little within-skeletal and intraspecific variations, but the heterogeneity and individual difference of the Mg/Ca, Ba/Ca, and Pb/Ca were relatively large, the reasons of which still remain unresolved.
更新日期:2020-05-12

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug