当前位置: X-MOL 学术Clays Clay Miner. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CLAY MINERALS AS THE KEY TO THE SEQUESTRATION OF CARBON IN SOILS
Clays and Clay Minerals ( IF 2.0 ) Pub Date : 2020-04-01 , DOI: 10.1007/s42860-020-00071-z
Gordon Jock Churchman , Mandeep Singh , Amanda Schapel , Binoy Sarkar , Nanthi Bolan

Results from earlier laboratory and field experiments were interrogated for the possibilities of sequestration, or long-term accumulation, of carbon from excess greenhouse gases in the atmosphere. In the laboratory study, samples of three (top) soils dominated by kaolinite and illite (together), smectite, and allophane were examined for the adsorption and desorption of dissolved organic carbon (DOC). Adsorption and desorption of DOC were carried out on clay fractions extracted physically and after first native organic matter and then iron oxides were removed chemically. Labeled organic material was added to the soils to assess the priming effect of organic carbon (OC). In the field, changes in OC were measured in sandy soils that had been amended by additions of clay for between 3 and 17 years, both through incorporation of exogenous clay and delving of in situ clay. The laboratory experiments demonstrated that a portion of DOC was held strongly in all soils. The amount of DOC adsorbed depended on clay mineral types, including Fe oxides. Much adsorbed DOC was lost by desorption in water and a substantial amount of native OC was lost on priming with new OC. Addition of clay to soils led to increased OC. Therefore, addition of clay to soil may enhance net sequestration of C. Organic carbon close to mineral surfaces or within microaggregates is held most strongly. Carbon sequestration may occur in subsoils with unsaturated mineral surfaces. However, incorporation of carbon into macroaggregates from enhanced plant growth might be most effective in removing excess carbon from the atmosphere, albeit over the short-term.

中文翻译:

粘土矿物是土壤中碳封存的关键

对早期实验室和现场实验的结果进行了询问,以确定从大气中过量的温室气体中封存或长期积累碳的可能性。在实验室研究中,检测了以高岭石和伊利石(一起)、蒙脱石和水铝石为主的三种(顶层)土壤样品对溶解有机碳 (DOC) 的吸附和解吸情况。DOC 的吸附和解吸是对物理提取的粘土部分进行的,首先是天然有机物,然后是化学去除氧化铁。将标记的有机材料添加到土壤中以评估有机碳 (OC) 的引发效应。在田间,通过添加粘土进行了 3 到 17 年的改良,测量了沙质土壤中 OC 的变化,通过掺入外源粘土和挖掘原位粘土。实验室实验表明,一部分 DOC 在所有土壤中都保持牢固。吸附的 DOC 量取决于粘土矿物类型,包括铁氧化物。大量吸附的 DOC 因在水中解吸而损失,大量天然 OC 在用新 OC 引发时损失。向土壤中添加粘土导致 OC 增加。因此,向土壤中添加粘土可能会增强 C 的净封存。靠近矿物表面或微团聚体内的有机碳被最强烈地保持。碳封存可能发生在具有不饱和矿物表面的底土中。然而,通过促进植物生长将碳结合到大团聚体中可能最有效地从大气中去除多余的碳,尽管是在短期内。实验室实验表明,一部分 DOC 在所有土壤中都保持牢固。吸附的 DOC 量取决于粘土矿物类型,包括铁氧化物。大量吸附的 DOC 因在水中解吸而损失,大量天然 OC 在用新 OC 引发时损失。向土壤中添加粘土导致 OC 增加。因此,向土壤中添加粘土可能会增强 C 的净封存。靠近矿物表面或微团聚体内的有机碳被最强烈地保持。碳封存可能发生在具有不饱和矿物表面的底土中。然而,通过促进植物生长将碳结合到大团聚体中可能最有效地从大气中去除多余的碳,尽管是在短期内。实验室实验表明,一部分 DOC 在所有土壤中都保持牢固。吸附的 DOC 量取决于粘土矿物类型,包括铁氧化物。大量吸附的 DOC 因在水中解吸而损失,大量天然 OC 在用新 OC 引发时损失。向土壤中添加粘土导致 OC 增加。因此,向土壤中添加粘土可能会增强 C 的净封存。靠近矿物表面或微团聚体内的有机碳被最强烈地保持。碳封存可能发生在具有不饱和矿物表面的底土中。然而,通过促进植物生长将碳结合到大团聚体中可能最有效地从大气中去除多余的碳,尽管是在短期内。吸附的 DOC 量取决于粘土矿物类型,包括铁氧化物。大量吸附的 DOC 因在水中解吸而损失,大量天然 OC 在用新 OC 引发时损失。向土壤中添加粘土导致 OC 增加。因此,向土壤中添加粘土可以增强 C 的净封存。靠近矿物表面或微团聚体内的有机碳被最强烈地保持。碳封存可能发生在具有不饱和矿物表面的底土中。然而,通过促进植物生长将碳结合到大团聚体中可能最有效地从大气中去除多余的碳,尽管是在短期内。吸附的 DOC 量取决于粘土矿物类型,包括铁氧化物。大量吸附的 DOC 因在水中解吸而损失,大量天然 OC 在用新 OC 引发时损失。向土壤中添加粘土导致 OC 增加。因此,向土壤中添加粘土可能会增强 C 的净封存。靠近矿物表面或微团聚体内的有机碳被最强烈地保持。碳封存可能发生在具有不饱和矿物表面的底土中。然而,通过促进植物生长将碳结合到大团聚体中可能最有效地从大气中去除多余的碳,尽管是在短期内。向土壤中添加粘土导致 OC 增加。因此,向土壤中添加粘土可能会增强 C 的净封存。靠近矿物表面或微团聚体内的有机碳被最强烈地保持。碳封存可能发生在具有不饱和矿物表面的底土中。然而,通过促进植物生长将碳结合到大团聚体中可能最有效地从大气中去除多余的碳,尽管是在短期内。向土壤中添加粘土导致 OC 增加。因此,向土壤中添加粘土可能会增强 C 的净封存。靠近矿物表面或微团聚体内的有机碳被最强烈地保持。碳封存可能发生在具有不饱和矿物表面的底土中。然而,通过促进植物生长将碳结合到大团聚体中可能最有效地从大气中去除多余的碳,尽管是在短期内。
更新日期:2020-04-01
down
wechat
bug