当前位置: X-MOL 学术Appl. Biochem. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Differential Activation of Ferulic Acid Catabolic Pathways of Amycolatopsis sp. ATCC 39116 in Submerged and Surface Cultures.
Applied Biochemistry and Biotechnology ( IF 3.1 ) Pub Date : 2020-05-12 , DOI: 10.1007/s12010-020-03336-4
Victor Contreras-Jácquez 1 , Jorge Rodríguez-González 2 , Juan Carlos Mateos-Díaz 2 , Elisa M Valenzuela-Soto 1 , Ali Asaff-Torres 1
Affiliation  

Amycolatopsis sp. ATCC 39116 catabolizes ferulic acid by the non-oxidative deacetylation and β-oxidation pathways to produce vanillin and vanillic acid, respectively. In submerged culture, vanillin productivity decreased more than 8-fold, when ferulic, p-coumaric, and caffeic acids were employed in pre-cultures of the microorganism in order to activate the ferulic acid catabolic pathways, resulting in a carbon redistribution since vanillic acid and guaiacol productivities increased more than 5-fold compared with control. In contrast, in surface culture, the effects of ferulic and sinapic acids in pre-cultures were totally opposite to those of the submerged culture, directing the carbon distribution into vanillin formation. In surface culture, more than 30% of ferulic acid can be used as carbon source for other metabolic processes, such as ATP regeneration. In this way, the intracellular ATP concentration remained constant during the biotransformation process by surface culture (100 μg ATP/mg protein), demonstrating a high energetic state, which can maintain active the non-oxidative deacetylation pathway. In contrast, in submerged culture, it decreased 3.15-fold at the end of the biotransformation compared with the initial content, showing a low energetic state, while the NAD+/NADH ratio (23.15) increased 1.81-fold. It seems that in submerged culture, low energetic and high oxidative states are the physiological conditions that can redirect the ferulic catabolism into β-oxidative pathway and/or vanillin oxidation to produce vanillic acid.

中文翻译:

支链淀粉阿魏酸分解代谢途径的差异激活 浸没和表面培养物中的ATCC 39116。

真菌病 ATCC 39116通过非氧化脱乙酰化和β-氧化途径分解阿魏酸,分别生产香草醛和香草酸。在深层培养中,当微生物的预培养物中使用阿魏酸,对香豆酸和咖啡酸来激活阿魏酸分解代谢途径时,香草醛生产率降低了8倍以上,这是由于香草酸导致了碳的重新分布愈创木酚的生产率比对照提高了5倍以上。相反,在表面培养中,阿魏酸和芥子酸在预培养中的作用与沉浸培养的作用完全相反,从而将碳分布引导到香兰素的形成中。在表面培养中,超过30%的阿魏酸可用作其他代谢过程的碳源,例如ATP再生。这样,在通过表面培养的生物转化过程中,细胞内ATP浓度保持恒定(100μgATP / mg蛋白),显示出高能量状态,可以维持非氧化脱乙酰途径的活性。相反,在深水培养中,与初始含量相比,它在生物转化结束时降低了3.15倍,显示出低能态,而NAD + / NADH比(23.15)增加了1.81倍。似乎在深层培养中,低能和高氧化态是可以使阿魏分解代谢重新定向到β-氧化途径和/或香草醛氧化以产生香草酸的生理条件。在通过表面培养的生物转化过程中,细胞内ATP浓度保持恒定(100μgATP / mg蛋白),显示出高能量状态,可以维持非氧化脱乙酰途径的活性。相反,在深水培养中,与初始含量相比,它在生物转化结束时降低了3.15倍,显示出低能态,而NAD + / NADH比(23.15)增加了1.81倍。似乎在深层培养中,低能和高氧化态是可以使阿魏分解代谢重新定向到β-氧化途径和/或香草醛氧化以产生香草酸的生理条件。在通过表面培养的生物转化过程中,细胞内ATP浓度保持恒定(100μgATP / mg蛋白),显示出高能量状态,可以维持非氧化脱乙酰途径的活性。相反,在深水培养中,与初始含量相比,它在生物转化结束时降低了3.15倍,显示出低能态,而NAD + / NADH比(23.15)增加了1.81倍。似乎在深层培养中,低能和高氧化态是可以使阿魏分解代谢重新定向到β-氧化途径和/或香草醛氧化以产生香草酸的生理条件。在生物转化结束时,与初始含量相比增加了15倍,显示出低能量状态,而NAD + / NADH比(23.15)增加了1.81倍。似乎在深层培养中,低能和高氧化态是可以使阿魏分解代谢重新定向到β-氧化途径和/或香草醛氧化以产生香草酸的生理条件。在生物转化结束时,与初始含量相比增加了15倍,显示出低能量状态,而NAD + / NADH比(23.15)增加了1.81倍。似乎在深层培养中,低能和高氧化态是可以使阿魏分解代谢重新定向到β-氧化途径和/或香草醛氧化以产生香草酸的生理条件。
更新日期:2020-05-12
down
wechat
bug