当前位置: X-MOL 学术Appl. Categor. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Further Results on the Structure of (Co)Ends in Finite Tensor Categories
Applied Categorical Structures ( IF 0.6 ) Pub Date : 2019-09-06 , DOI: 10.1007/s10485-019-09577-7
Kenichi Shimizu

Let $${\mathcal {C}}$$ C be a finite tensor category, and let $${\mathcal {M}}$$ M be an exact left $${\mathcal {C}}$$ C -module category. The action of $${\mathcal {C}}$$ C on $${\mathcal {M}}$$ M induces a functor $$\rho : {\mathcal {C}} \rightarrow \mathrm {Rex}({\mathcal {M}})$$ ρ : C → Rex ( M ) , where $$\mathrm {Rex}({\mathcal {M}})$$ Rex ( M ) is the category of k -linear right exact endofunctors on $${\mathcal {M}}$$ M . Our key observation is that $$\rho $$ ρ has a right adjoint $$\rho ^{\mathrm {ra}}$$ ρ ra given by the end $$\begin{aligned} \rho ^{\mathrm {ra}}(F) = \int _{M \in {\mathcal {M}}} \underline{\mathrm {Hom}}(M, F(M)) \quad (F \in \mathrm {Rex}({\mathcal {M}})). \end{aligned}$$ ρ ra ( F ) = ∫ M ∈ M Hom ̲ ( M , F ( M ) ) ( F ∈ Rex ( M ) ) . As an application, we establish the following results: (1) We give a description of the composition of the induction functor $${\mathcal {C}}_{{\mathcal {M}}}^* \rightarrow {\mathcal {Z}}({\mathcal {C}}_{{\mathcal {M}}}^*)$$ C M ∗ → Z ( C M ∗ ) and Schauenburg’s equivalence $${\mathcal {Z}}({\mathcal {C}}_{{\mathcal {M}}}^*) \approx {\mathcal {Z}}({\mathcal {C}})$$ Z ( C M ∗ ) ≈ Z ( C ) . (2) We introduce the space $$\mathrm {CF}({\mathcal {M}})$$ CF ( M ) of ‘class functions’ of $${\mathcal {M}}$$ M and initiate the character theory for pivotal module categories. (3) We introduce a filtration for $$\mathrm {CF}({\mathcal {M}})$$ CF ( M ) and discuss its relation with some ring-theoretic notions, such as the Reynolds ideal and its generalizations. (4) We show that $$\mathrm {Ext}_{{\mathcal {C}}}^{\bullet }(1, \rho ^{\mathrm {ra}}(\mathrm {id}_{{\mathcal {M}}}))$$ Ext C ∙ ( 1 , ρ ra ( id M ) ) is isomorphic to the Hochschild cohomology of $${\mathcal {M}}$$ M . As an application, we show that the modular group acts projectively on the Hochschild cohomology of a modular tensor category.

中文翻译:

有限张量范畴中(共)端结构的进一步结果

令 $${\mathcal {C}}$$ C 为有限张量范畴,令 $${\mathcal {M}}$$ M 为精确左 $${\mathcal {C}}$$ C -模块类别。$${\mathcal {C}}$$ C 对 $${\mathcal {M}}$$ M 的作用产生了一个函子 $$\rho : {\mathcal {C}} \rightarrow \mathrm {Rex} ({\mathcal {M}})$$ ρ : C → Rex ( M ) ,其中 $$\mathrm {Rex}({\mathcal {M}})$$ Rex ( M ) 是 k 线性的范畴$${\mathcal {M}}$$ M 上的正确自函子。我们的主要观察是 $$\rho $$ ρ 有一个右伴随 $$\rho ^{\mathrm {ra}}$$ ρ ra 由结尾 $$\begin{aligned} \rho ^{\mathrm { ra}}(F) = \int _{M \in {\mathcal {M}}} \underline{\mathrm {Hom}}(M, F(M)) \quad (F \in \mathrm {Rex} ({\mathcal {M}}))。\end{aligned}$$ ρ ra ( F ) = ∫ M ∈ M Hom ̲ ( M , F ( M ) ) ( F ∈ Rex ( M ) ) 。作为应用程序,我们建立以下结果:(1) 我们描述了归纳函子的组成 $${\mathcal {C}}_{{\mathcal {M}}}^* \rightarrow {\mathcal {Z}}({\mathcal {C }}_{{\mathcal {M}}}^*)$$ CM ∗ → Z ( CM ∗ ) 和 Schauenburg 的等价 $${\mathcal {Z}}({\mathcal {C}}_{{\mathcal {M}}}^*) \approx {\mathcal {Z}}({\mathcal {C}})$$ Z ( CM ∗ ) ≈ Z ( C ) 。(2) 我们引入 $${\mathcal {M}}$$ M 的“类函数”的空间 $$\mathrm {CF}({\mathcal {M}})$$ CF ( M ) 并启动关键模块类别的特征理论。(3) 我们介绍了 $$\mathrm {CF}({\mathcal {M}})$$ CF ( M ) 的过滤,并讨论了它与一些环论概念的关系,例如雷诺理想及其推广。(4) 我们证明 $$\mathrm {Ext}_{{\mathcal {C}}}^{\bullet }(1, \rho ^{\mathrm {ra}}(\mathrm {id}_{{ \mathcal {M}}}))$$ Ext C ∙ ( 1 , ρ ra ( id M ) ) 与 $${\mathcal {M}}$$ M 的 Hochschild 上同调同构。作为一个应用,我们展示了模群对模张量范畴的 Hochschild 上同调有投影作用。
更新日期:2019-09-06
down
wechat
bug