当前位置: X-MOL 学术Comput. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Matrix-Free Hyperviscosity Formulation for High-Order ALE Hydrodynamics
Computers & Fluids ( IF 2.8 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.compfluid.2020.104577
Pedro D. Bello-Maldonado , Tzanio V. Kolev , Robert N. Rieben , Vladimir Z. Tomov

Abstract The numerical approximation of compressible hydrodynamics is at the core of high-energy density (HED) multiphysics simulations as shocks are the driving force in experiments like inertial confinement fusion (ICF). In this work, we describe our extension of the hyperviscosity technique, originally developed for shock treatment in finite difference simulations, for use in arbitrarily high-order finite element methods for Lagrangian hydrodynamics. Hyperviscosity enables shock capturing while preserving the high-order properties of the underlying discretization away from the shock region. Specifically, we compute a high-order term based on a product of the mesh length scale to a high power scaled by a hyper-Laplacian operator applied to a scalar field. We then form the total artificial viscosity by taking a non-linear blend of this term and a traditional artificial viscosity term. We also present a matrix-free formulation for computing the finite element based hyper-Laplacian operator. Such matrix-free methods have superior performance characteristics compared to traditional full matrix assembly approaches and offer advantages for GPU based HPC hardware. We demonstrate the numerical convergence of our method and its application to complex, multi-material ALE simulations on high-order (curved) meshes.

中文翻译:

用于高阶 ALE 流体动力学的无基质高粘度配方

摘要 可压缩流体动力学的数值近似是高能量密度 (HED) 多物理场模拟的核心,因为冲击是惯性约束聚变 (ICF) 等实验的驱动力。在这项工作中,我们描述了我们最初为有限差分模拟中的冲击处理而开发的超粘滞技术的扩展,用于拉格朗日流体动力学的任意高阶有限元方法。超粘滞性可以捕获震动,同时保留远离震动区域的底层离散化的高阶属性。具体来说,我们基于网格长度尺度与应用到标量场的超拉普拉斯算子缩放的高幂的乘积来计算高阶项。然后我们通过将该项和传统的人工粘度项非线性混合来形成总人工粘度。我们还提出了一种用于计算基于有限元的超拉普拉斯算子的无矩阵公式。与传统的全矩阵组装方法相比,这种无矩阵方法具有卓越的性能特征,并为基于 GPU 的 HPC 硬件提供优势。我们展示了我们的方法的数值收敛性及其在高阶(弯曲)网格上复杂的多材料 ALE 模拟中的应用。与传统的全矩阵组装方法相比,这种无矩阵方法具有卓越的性能特征,并为基于 GPU 的 HPC 硬件提供优势。我们展示了我们的方法的数值收敛性及其在高阶(弯曲)网格上复杂的多材料 ALE 模拟中的应用。与传统的全矩阵组装方法相比,这种无矩阵方法具有卓越的性能特征,并为基于 GPU 的 HPC 硬件提供优势。我们展示了我们的方法的数值收敛性及其在高阶(弯曲)网格上复杂的多材料 ALE 模拟中的应用。
更新日期:2020-06-01
down
wechat
bug