当前位置: X-MOL 学术Plasmonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Silver Nanocube- and Nanowire-Based SERS Substrates for Ultra-low Detection of PATP and Thiram Molecules
Plasmonics ( IF 3.3 ) Pub Date : 2020-05-09 , DOI: 10.1007/s11468-020-01172-0
Govind Kumar , R. K. Soni

The shape-anisotropic metal nanoparticles support large surface plasmon resonance (SPR) wavelength tuning and higher intrinsic electromagnetic hot spots for excellent surface-enhanced Raman spectroscopy (SERS) performance. Here, two shape-anisotropic nanostructures, silver nanocubes and nanowires with sharp features and high yield, are synthesized using the polyol reduction method. Finite-difference time-domain (FDTD) simulations are performed to understand the origin of the SPR peaks in the absorption spectra and for optimization of excitation wavelengths for large near-field enhancement. Silver nanocubes and nanowires exhibit broad plasmon resonances over the visible region of the electromagnetic spectrum with maxima around 498 nm and 410 nm, respectively. The SERS activity of nanocubes and nanowires are investigated for three molecules of different Raman activity. The SERS spectra show higher activity for nanocubes and ultra-low molecular detection (10−15 M) capability of the fabricated substrates for rhodamine B (RhB) dye, p-aminothiophenol (PATP), and pesticide thiram. Relatively higher enhancement of some Raman modes is observed when excited with laser wavelength 532 nm indicating photo-induced charge transfer from metal to molecule.



中文翻译:

基于银纳米立方和纳米线的SERS底物,用于超低检测PATP和Thiram分子

形状各向异性的金属纳米粒子支持大表面等离子体共振(SPR)波长调谐和更高的固有电磁热点,从而具有出色的表面增强拉曼光谱(SERS)性能。在这里,使用多元醇还原法合成了两种形状各向异性的纳米结构,即具有尖锐特征和高产率的银纳米立方体和纳米线。进行时域有限差分(FDTD)模拟,以了解吸收光谱中SPR峰的起源,并优化激发波长以实现大的近场增强。银纳米立方体和纳米线在电磁光谱的可见光区域表现出广泛的等离子体共振,其最大值分别在498 nm和410 nm左右。研究了三种不同拉曼活性分子的纳米立方体和纳米线的SERS活性。SERS光谱显示出对纳米立方体和超低分子检测更高的活性(10-15  M)的已加工底物对若丹明B(RhB)染料,氨基硫酚(PATP)和杀虫剂硫醇的能力。当用激光波长532 nm激发时,观察到某些拉曼模式的相对较高的增强,表明光诱导的电荷从金属转移到分子。

更新日期:2020-05-09
down
wechat
bug