当前位置: X-MOL 学术Natl. Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-cell yolk-shell nNanoencapsulation for long-term viability with size-dependent permeability and molecular recognition
National Science Review ( IF 20.6 ) Pub Date : 2020-05-09 , DOI: 10.1093/nsr/nwaa097
Li Wang 1 , Yu Li 1 , Xiao-Yu Yang 1 , Bo-Bo Zhang 2 , Nöelle Ninane 3 , Henk J Busscher 4 , Zhi-Yi Hu 1 , Cyrille Delneuville 2 , Nan Jiang 1 , Hao Xie 1 , Gustaaf Van Tendeloo 5 , Tawfique Hasan 6 , Bao-Lian Su 1
Affiliation  

Like nanomaterials, bacteria have been unknowingly used for centuries. They hold significant economic potential for fuel and medicinal compound production. Their full exploitation, however, is impeded by low biological activity and stability in industrial reactors. Though cellular encapsulation addresses these limitations, cell survival is usually compromised due to shell-to-cell contacts and low permeability. Here, we report ordered packing of silica nanocolloids with organized, uniform, and tunable nanoporosities for single cyanobacterium nanoencapsulation using protamine as an electrostatic template. A space between the capsule shell and the cell is created by controlled internalization of protamine, resulting in a highly ordered porous shell-void-cell structure formation. These unique yolk-shell nanostructures provide long-term cell viability with superior photosynthetic activities and resistance in harsh environments. In addition, engineering the colloidal packing allows tunable shell-pore diameter for size-dependent permeability and introduction of new functionalities for specific molecular recognition. Our strategy could significantly enhance the activity and stability of cyanobacteria for various nanobiotechnological applications.

中文翻译:

具有大小依赖性渗透性和分子识别能力的单细胞蛋黄壳纳米封装技术

像纳米材料一样,细菌已经在不知不觉中使用了几个世纪。它们在燃料和药用化合物生产方面具有巨大的经济潜力。然而,它们的充分利用受到工业反应器中低生物活性和稳定性的阻碍。尽管细胞封装解决了这些限制,但由于壳与细胞的接触和低渗透性,细胞存活通常会受到影响。在这里,我们报告了二氧化硅纳米胶体的有序包装,具有有组织、均匀和可调的纳米孔隙,用于使用鱼精蛋白作为静电模板的单个蓝藻纳米封装。胶囊壳和细胞之间的空间是由鱼精蛋白的受控内化产生的,从而形成高度有序的多孔壳-空隙-细胞结构。这些独特的蛋黄壳纳米结构提供了长期的细胞活力,在恶劣的环境中具有卓越的光合活性和抵抗力。此外,对胶体填料进行工程设计可以调节壳孔​​直径,以实现与尺寸相关的渗透性,并引入用于特定分子识别的新功能。我们的策略可以显着提高蓝藻在各种纳米生物技术应用中的活性和稳定性。
更新日期:2020-05-09
down
wechat
bug