当前位置: X-MOL 学术Comput. Geotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A generic framework for overpressure generation in sedimentary sequences under thermal perturbations
Computers and Geotechnics ( IF 5.3 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.compgeo.2020.103636
Gong-Da Lu , Xing-Guo Yang , Shun-Chao Qi , Xi-Long Li , Pei-Pei Ding , Jia-Wen Zhou

Abstract Abnormal pore pressures in excess of the hydrostatic equilibrium are observed in natural and artificial sediment systems worldwide. Such overpressure exerts a fundamental control over the diagenesis, stability, and productivity of both sedimentary reservoirs. The basin dynamics for overpressure generation involve complex THMC processes during sediment accumulation. In this paper, we develop a generic framework for thermo-chemical consolidation in natural and artificial sedimentary sequences by extending Biot’s classical poroelasticity. The proposed theoretical model is then conveniently recast into an explicit form for one-dimensional sedimentation. The resulting formulation essentially extends the original Gibson’s theory by incorporating coupled THMC effects in general sedimentary sequences, and a hierarchical scrutiny of different overpressuring mechanisms thus becomes straightforward. Moreover, a closed-form equation is derived from the new chemo-thermo-poroelasticity model for accreting sediments, and the critical temperature for pore pressure changes via hydration/dehydration is thus determined. The model demonstrates that overpressuring and depressuring are not mutually exclusive because of the competition between water volume changes and thermal strains induced by chemical reactions. By using evolutive properties of a reactive artificial sediment, our model calculations have highlighted the critical influences of the sediment and environment temperatures and deposition rate on the contribution of each overpressuring mechanism.

中文翻译:

热扰动下沉积层序超压产生的通用框架

摘要 在世界各地的自然和人工沉积系统中都观察到了超过流体静力平衡的异常孔隙压力。这种超压对两个沉积储层的成岩作用、稳定性和生产力产生了根本性的控制。产生超压的盆地动力学涉及沉积物堆积过程中复杂的 THMC 过程。在本文中,我们通过扩展 Biot 的经典多孔弹性,为天然和人工沉积层序中的热化学固结开发了一个通用框架。然后将所提出的理论模型方便地改写为一维沉积的明确形式。由此产生的公式通过在一般沉积序列中结合耦合 THMC 效应,基本上扩展了最初的吉布森理论,因此,对不同超压机制的分级审查变得简单明了。此外,从新的沉积物化学-热-孔弹性模型中推导出了一个封闭式方程,从而确定了水化/脱水引起的孔隙压力变化的临界温度。该模型表明,由于化学反应引起的水量变化和热应变之间存在竞争,因此超压和减压并不相互排斥。通过使用反应性人工沉积物的演化特性,我们的模型计算突出了沉积物和环境温度以及沉积速率对每种超压机制的贡献的关键影响。从新的沉积物化学-热-孔隙弹性模型中推导出一个封闭式方程,从而确定水化/脱水引起的孔隙压力变化的临界温度。该模型表明,由于化学反应引起的水量变化和热应变之间存在竞争,因此超压和减压并不相互排斥。通过使用反应性人工沉积物的演化特性,我们的模型计算突出了沉积物和环境温度以及沉积速率对每种超压机制的贡献的关键影响。一个封闭式方程是从新的沉积物化学-热-孔隙弹性模型中推导出来的,从而确定了水化/脱水引起的孔隙压力变化的临界温度。该模型表明,由于化学反应引起的水量变化和热应变之间存在竞争,因此超压和减压并不相互排斥。通过使用反应性人工沉积物的演化特性,我们的模型计算突出了沉积物和环境温度以及沉积速率对每种超压机制的贡献的关键影响。该模型表明,由于化学反应引起的水量变化和热应变之间存在竞争,因此超压和减压并不相互排斥。通过使用反应性人工沉积物的演化特性,我们的模型计算突出了沉积物和环境温度以及沉积速率对每种超压机制的贡献的关键影响。该模型表明,由于化学反应引起的水量变化和热应变之间存在竞争,因此超压和减压并不相互排斥。通过使用反应性人工沉积物的演化特性,我们的模型计算突出了沉积物和环境温度以及沉积速率对每种超压机制的贡献的关键影响。
更新日期:2020-08-01
down
wechat
bug