当前位置: X-MOL 学术Planet. Space Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Injection of meteoric phosphorus into planetary atmospheres
Planetary and Space Science ( IF 2.4 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.pss.2020.104926
Juan Diego Carrillo-Sánchez , David L. Bones , Kevin M. Douglas , George J. Flynn , Sue Wirick , Bruce Fegley , Tohru Araki , Burkhard Kaulich , John M.C. Plane

Abstract This study explores the delivery of phosphorus to the upper atmospheres of Earth, Mars, and Venus via the ablation of cosmic dust particles. Micron-size meteoritic particles were flash heated to temperatures as high as 2900 ​K in a Meteor Ablation Simulator (MASI), and the ablation of PO and Ca recorded simultaneously by laser induced fluorescence. Apatite grains were also ablated as a reference. The speciation of P in anhydrous chondritic porous Interplanetary Dust Particles was made by K-edge X-ray absorption near edge structure (XANES) spectroscopy, demonstrating that P mainly occurs in phosphate-like domains. A thermodynamic model of P in a silicate melt was then developed for inclusion in the Leeds Chemical Ablation Model (CABMOD). A Regular Solution model used to describe the distribution of P between molten stainless steel and a multicomponent slag is shown to provide the most accurate solution for a chondritic-composition, and reproduces satisfactorily the PO ablation profiles observed in the MASI. Meteoritic P is moderately volatile and ablates before refractory metals such as Ca; its ablation efficiency in the upper atmosphere is similar to Ni and Fe. The speciation of evaporated P depends significantly on the oxygen fugacity, and P should mainly be injected into planetary upper atmospheres as PO2, which will then likely undergo dissociation to PO (and possibly P) through hyperthermal collisions with air molecules. The global P ablation rates are estimated to be 0.017 ​t ​d−1 (tonnes per Earth day), 1.15 ​× ​10−3 ​t ​d−1 and 0.024 ​t ​d−1 for Earth, Mars and Venus, respectively.

中文翻译:

将大气磷注入行星大气

摘要 本研究探索了通过消融宇宙尘埃粒子将磷输送到地球、火星和金星的高层大气。在流星消融模拟器 (MASI) 中将微米级陨石颗粒快速加热至高达 2900 K 的温度,并通过激光诱导荧光同时记录 PO 和 Ca 的消融。磷灰石颗粒也被烧蚀作为参考。无水球粒陨石多孔星际尘埃粒子中 P 的形态是通过 K 边 X 射线吸收近边结构 (XANES) 光谱进行的,表明 P 主要存在于磷酸盐状域中。然后开发了硅酸盐熔体中磷的热力学模型,以包含在利兹化学烧蚀模型 (CABMOD) 中。用于描述熔融不锈钢和多组分炉渣之间 P 分布的常规解模型显示为球粒状组成提供最准确的解,并令人满意地再现了 MASI 中观察到的 PO 烧蚀曲线。陨石P具有中等挥发性,比难熔金属如Ca先烧蚀;它在高层大气中的烧蚀效率与 Ni 和 Fe 相似。蒸发的 P 的形态在很大程度上取决于氧逸度,P 应该主要以 PO2 的形式注入行星高层大气,然后通过与空气分子的超热碰撞可能会分解为 PO(可能还有 P)。地球、火星和金星的全球 P 消融率估计为 0.017 t d−1(吨/地球日)、1.15 × 10−3 t d−1 和 0.024 t d−1 ,
更新日期:2020-08-01
down
wechat
bug