当前位置: X-MOL 学术J. Inorg. Organomet. Polym. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel High Energy Density Material Based on Metastable Intermolecular Nanocomposite
Journal of Inorganic and Organometallic Polymers and Materials ( IF 3.9 ) Pub Date : 2020-05-06 , DOI: 10.1007/s10904-020-01539-0
Sherif Elbasuney , Abdelaziz Hamed , Shukri Ismael , Mohamed Mokhtar , Mohamed Gobara

Metastable intermolecular composites (MICs) are mixtures of nanosized metal oxide/metal that are stable under normal conditions. Whereas heat output of typical CHNO-based energetic system is limited to stored chemical energy; MICs can offer vigorous exothermic reactions with substantial heat output. Ferric oxide is the most common oxidizer for MIC applications. Facile synthesis of Fe2O3 particles of 5 nm has been reported. Fe2O3 particles were harvested from their synthesis medium and re-dispersed in acetone with aluminium nanoparticles (NPs). Subsequently HMX, the most vigorous high explosive material, was dissolved in MIC colloid. HMX nanocomposite was developed via co-precipitation technique. Elemental mapping using SEM demonstrated uniform dispersion of MIC particles into HMX. HMX nanocomposite demonstrated an increase in total heat release by 53% using DSC. Additionally MIC particles offered an increase in HMX destructive effect by 17% using Kast test. It can be manifested that MIC particles with high interfacial surface area were effectively integrated into HMX with the development of vigorous energetic nanocomposite material. This is the first time ever to report on MIC-based HMX nanocoposite.



中文翻译:

基于亚稳分子间纳米复合材料的新型高能密度材料

亚稳态分子间复合材料(MIC)是在正常条件下稳定的纳米级金属氧化物/金属的混合物。而典型的基于CHNO的高能系统的热量输出仅限于存储的化学能;MIC可以产生剧烈的放热反应,并产生大量的热量。三氧化二铁是用于MIC应用的最常见的氧化剂。已经报道了容易地合成5nm的Fe 2 O 3颗粒。铁2 O 3从其合成介质中收集颗粒,然后将其与铝纳米颗粒(NPs)重新分散在丙酮中。随后,将最具活力的高爆炸性材料HMX溶解在MIC胶体中。HMX纳米复合材料是通过共沉淀技术开发的。使用SEM进行元素标测表明MIC颗粒均匀分散到HMX中。使用DSC,HMX纳米复合材料的总热量释放增加了53%。此外,使用Kast测试,MIC粒子可将HMX的破坏效果提高17%。可以证明,随着高能纳米复合材料的发展,具有高界面表面积的MIC颗粒被有效地结合到HMX中。这是有史以来第一次报告基于MIC的HMX纳米复合材料。

更新日期:2020-05-06
down
wechat
bug