当前位置: X-MOL 学术npj Comput. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational search for magnetic and non-magnetic 2D topological materials using unified spin–orbit spillage screening
npj Computational Materials ( IF 9.4 ) Pub Date : 2020-05-07 , DOI: 10.1038/s41524-020-0319-4
Kamal Choudhary , Kevin F. Garrity , Jie Jiang , Ruth Pachter , Francesca Tavazza

Two-dimensional topological materials (2D TMs) have a variety of properties that make them attractive for applications including spintronics and quantum computation. However, there are only a few such experimentally known materials. To help discover new 2D TMs, we develop a unified and computationally inexpensive approach to identify magnetic and non-magnetic 2D TMs, including gapped and semi-metallic topological classifications, in a high-throughput way using density functional theory-based spin–orbit spillage, Wannier-interpolation, and related techniques. We first compute the spin–orbit spillage for the ~1000 2D materials in the JARVIS-DFT dataset, resulting in 122 materials with high-spillage values. Then, we use Wannier-interpolation to carry-out Z2, Chern-number, anomalous Hall conductivity, Curie temperature, and edge state calculations to further support the predictions. We identify various topologically non-trivial classes such as quantum spin-Hall insulators, quantum anomalous-Hall insulators, and semimetals. For a few predicted materials, we run G0W0+SOC and DFT+U calculations. We find that as we introduce many-body effects, only a few materials retain non-trivial band-topology, suggesting the importance of high-level density functional theory (DFT) methods in predicting 2D topological materials. However, as an initial step, the automated spillage screening and Wannier-approach provide useful predictions for finding new topological materials and to narrow down candidates for experimental synthesis and characterization.



中文翻译:

使用统一的自旋轨道泄漏筛选对磁性和非磁性二维拓扑材料进行计算搜索

二维拓扑材料(2D TM)具有多种特性,使其对自旋电子学和量子计算等应用具有吸引力。但是,只有少数这种实验已知的材料。为了帮助发现新的2D TM,我们使用基于密度泛函理论的自旋轨道溢出技术,以高通量的方式,开发了一种统一的,计算成本低廉的方法来识别磁性和非磁性2D TM,包括带隙和半金属拓扑分类。 ,Wannier插值及相关技术。我们首先计算JARVIS-DFT数据集中约1000种2D材料的自旋轨道泄漏,从而得出122种具有高泄漏值的材料。然后,我们使用Wannier插值来执行Z 2,切恩数,霍尔电导率异常,居里温度和边缘状态计算,以进一步支持这些预测。我们确定了各种拓扑非平凡的类别,例如量子自旋霍尔绝缘子,量子异常霍尔绝缘子和半金属。对于一些预测的材料,我们运行G 0 W 0 + SOC和DFT + U计算。我们发现,当我们引入多体效应时,只有极少数材料保留了非平凡的能带拓扑,这表明高密度密度泛函理论(DFT)方法在预测2D拓扑材料中的重要性。然而,作为第一步,自动泄漏筛选和Wannier方法为寻找新的拓扑材料以及缩小实验合成和表征范围提供了有用的预测。

更新日期:2020-05-07
down
wechat
bug