当前位置: X-MOL 学术Cell Rep. Phys. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular-Scale Nanodiamond with High-Density Color Centers Fabricated from Graphite by Laser Shocking
Cell Reports Physical Science ( IF 7.9 ) Pub Date : 2020-05-06 , DOI: 10.1016/j.xcrp.2020.100054
Maithilee Motlag , Xingtao Liu , Ni Putu Dewi Nurmalasari , Shengyu Jin , Qiong Nian , Charles Park , Linrui Jin , Libai Huang , Jing Liu , Gary J. Cheng

Nanodiamonds (NDs) with nitrogen vacancy (NV) color centers have the potential for quantum information science and bioimaging due to their stable and non-classical photon emission at room temperature. Large-scale fabrication of molecular-size nanodiamonds with sufficient color centers may economically promote their application in versatile multidisciplinary fields. Here, the manufacture of molecular-size NV center-enriched nanodiamonds from graphite powder is reported. We use an ultrafast laser shocking technique to generate intense plasma, which transforms graphite to nanodiamonds under the confinement layer. Molecular dynamics simulations suggest that the high pressure of 35 GPa and the high temperature of 3,000K result in the metaphase transition of graphite to nanodiamonds within 100 ps. A high concentration of NV centers is observed at the optimal laser energy of 3.82 GW/cm2, at which point molecular-size (∼5 nm) nanodiamonds can individually host as many as 100 NV centers. Consecutive melamine annealing following ultrafast laser shocking enriches the number of NV centers >10-fold and enhances the spontaneous decay rate of the NV center by up to 5 times. Our work may enhance the feasibility of nanodiamonds for applications, including quantum information, electromagnetic sensing, bioimaging, and drug delivery.



中文翻译:

激光冲击石墨制备的具有高密度色心的分子级纳米金刚石

具有氮空位(NV)颜色中心的纳米金刚石(NDs)由于其在室温下稳定且非经典的光子发射而具有量子信息科学和生物成像的潜力。具有足够的色心的分子大小的纳米金刚石的大规模制造可以经济地促进其在通用的多学科领域中的应用。在此,报道了由石墨粉末制造分子大小的NV中心富集的纳米金刚石。我们使用超快激光冲击技术来产生强烈的等离子体,该等离子体在限制层下将石墨转变为纳米金刚石。分子动力学模拟表明,35 GPa的高压和3,000 K的高温导致石墨在100 ps内过渡到纳米金刚石。如图2所示,此时分子大小(约5 nm)的纳米金刚石可以单独容纳多达100个NV中心。超快激光冲击后的连续三聚氰胺退火使NV中心的数量增加了10倍以上,并使NV中心的自发衰减速率提高了5倍。我们的工作可能会增强纳米金刚石在各种应用中的可行性,包括量子信息,电磁感应,生物成像和药物输送。

更新日期:2020-05-06
down
wechat
bug