当前位置: X-MOL 学术J. Theor. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A network model for determining decomposition, topology, and properties of the woody crown.
Journal of Theoretical Biology ( IF 1.9 ) Pub Date : 2020-05-07 , DOI: 10.1016/j.jtbi.2020.110318
Carlos Henrique Britto de Assis Prado 1 , Dilma Maria de Brito Melo Trovão 2 , João Paulo Souza 3
Affiliation  

The acquisition of resources and airspace of woody crown occur by way of axes supporting annexes. Regardless of age, size, or branching system (monopodial or sympodial), the woody crown shows branched leafy axes implementing an aerial network. We propose here to represent the woody crown through a network comprised of two components, the segments of woody axes named connectors (CO) delimited by nodes (NO) as the branching regions. CO may link NO of different categories (regular, initial, final, and emission) as defined by the relative position of the NO in a crown and how many CO the NO has. The woody crown network (WCN) is similar to a random network with the probability of NO having some CO following an exponential decay. The absence of loops and real hubs weakened the robustness of WCN against failure or attacks on NO. The quantities of NO and CO and the proportions between them were the features of decomposition, and the distances measured in some CO between types of NO captured the topological characteristics of WCN. By combining decomposition and topology, we disclosed some properties of WCN, such as navigability, vulnerability, symmetry, and complexity. Navigability and complexity increased, while vulnerability and symmetry decreased exponentially as the size (ΣNO) of WCN enlarged. The behavior of properties as a function of ΣNO exposed some limits to mitigate the inherent hydraulic resistance during WCN development. Decomposition, topology, and properties of WCN in trees of Cerrado vegetation were interrelated to other crown traits revealing the strategies for acquiring airspace.

中文翻译:

一个网络模型,用于确定木冠的分解,拓扑和特性。

木冠的资源和空域的获取是通过支撑附件的轴进行的。无论年龄,大小或分支系统(单足或共生)如何,木质冠冠均显示分支的多叶轴,它们实现了空中网络。我们在这里建议通过一个由两个部分组成的网络来表示木质冠,木质节点的各部分称为连接器(CO),由节点(NO)界定为分支区域。CO可以将不同类别的NO(常规,初始,最终和排放)联系起来,这取决于NO在冠中的相对位置以及NO具有多少CO。木质冠状网络(WCN)类似于随机网络,其NO随指数衰减而具有一些CO的可能性。缺少环路和真实的集线器会削弱WCN抵抗故障或NO攻击的鲁棒性。NO和CO的数量及其比例是分解的特征,NO的类型之间在某些CO中测得的距离反映了WCN的拓扑特征。通过结合分解和拓扑,我们公开了WCN的某些属性,例如可导航性,易损性,对称性和复杂性。随着WCN大小(ΣNO)的增大,可导航性和复杂性增加,而脆弱性和对称性则呈指数下降。作为ΣNO函数的性能行为暴露了一些限制,以减轻WCN开发过程中固有的水力阻力。塞拉多植被树木中WCN的分解,拓扑和性质与其他树冠特征相互关联,揭示了获取空域的策略。NO的类型之间在某些CO中测得的距离捕获了WCN的拓扑特征。通过结合分解和拓扑,我们公开了WCN的某些属性,例如可导航性,脆弱性,对称性和复杂性。随着WCN大小(ΣNO)的增大,可导航性和复杂性增加,而脆弱性和对称性则呈指数下降。作为ΣNO函数的性能行为暴露了一些限制,以减轻WCN开发过程中固有的水力阻力。塞拉多植被树木中WCN的分解,拓扑和性质与其他树冠特征相互关联,揭示了获取空域的策略。NO的类型之间在某些CO中测得的距离捕获了WCN的拓扑特征。通过结合分解和拓扑,我们公开了WCN的某些属性,例如可导航性,易损性,对称性和复杂性。随着WCN大小(ΣNO)的增大,可导航性和复杂性增加,而脆弱性和对称性则呈指数下降。作为ΣNO函数的性能行为暴露了一些限制,以减轻WCN开发过程中固有的水力阻力。塞拉多植被树木中WCN的分解,拓扑和性质与其他树冠特征相互关联,揭示了获取空域的策略。例如导航性,脆弱性,对称性和复杂性。随着WCN大小(ΣNO)的增大,可导航性和复杂性增加,而脆弱性和对称性则呈指数下降。作为ΣNO函数的性能行为暴露了一些限制,以减轻WCN开发过程中固有的水力阻力。塞拉多植被树木中WCN的分解,拓扑结构和性质与其他树冠性状相互关联,揭示了获取空域的策略。例如导航性,脆弱性,对称性和复杂性。随着WCN大小(ΣNO)的增大,可导航性和复杂性增加,而脆弱性和对称性则呈指数下降。作为ΣNO函数的性能行为暴露了一些限制,以减轻WCN开发过程中固有的水力阻力。塞拉多植被树木中WCN的分解,拓扑和性质与其他树冠特征相互关联,揭示了获取空域的策略。
更新日期:2020-05-07
down
wechat
bug