当前位置: X-MOL 学术ChemPlusChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
[1]Benzothieno[3,2-b][1]benzothiophene-Phthalocyanine Derivatives: A Subclass of Solution-Processable Electron-Rich Hole Transport Materials.
ChemPlusChem ( IF 3.4 ) Pub Date : 2020-05-05 , DOI: 10.1002/cplu.202000281
Gloria Zanotti 1 , Nicola Angelini 1 , Giuseppe Mattioli 1 , Anna Maria Paoletti 1 , Giovanna Pennesi 1 , Daniela Caschera 2 , Anatoly Petrovich Sobolev 3 , Luca Beverina 4 , Adiel Mauro Calascibetta 4 , Alessandro Sanzone 4 , Aldo Di Carlo 1, 5, 6 , Beatrice Berionni Berna 5 , Sara Pescetelli 5 , Antonio Agresti 5, 6
Affiliation  

The [1]benzothieno[3,2‐b][1]benzothiophene (BTBT) planar system was used to functionalize the phthalocyanine ring aiming at synthesizing novel electron‐rich π‐conjugated macrocycles. The resulting ZnPc−BTBT and ZnPc−(BTBT)4 derivatives are the first two examples of a phthalocyanine subclass having potential use as solution‐processable p‐type organic semiconductors. In particular, the combination of experimental characterizations and theoretical calculations suggests compatible energy level alignments with mixed halide hybrid perovskite‐based devices. Furthermore, ZnPc−(BTBT)4 features a high aggregation tendency, a useful tool to design compact molecular films. When tested as hole transport materials in perovskite solar cells under 100 mA cm−2 standard AM 1.5G solar illumination, ZnPc−(BTBT)4 gave power conversion efficiencies as high as 14.13 %, irrespective of the doping process generally required to achieve high photovoltaic performances. This work is a first step toward a new phthalocyanine core engineerization to obtain robust, yet more efficient and cost‐effective materials for organic electronics and optoelectronics.

中文翻译:

[1] Benzothieno [3,2-b] [1]苯并噻吩-酞菁衍生物:可溶液处理的富电子空穴传输材料的一个子类。

[1] benzothieno [3,2– b ] [1]苯并噻吩(BTBT)平面系统用于官能化酞菁环,旨在合成新型富电子的π共轭大环。所得的ZnPc-BTBT和ZnPc-(BTBT)4衍生物是酞菁亚类的前两个例子,它们有可能用作可溶液加工的p型有机半导体。特别是,实验表征和理论计算的结合表明,能级与混合卤化物杂化钙钛矿基设备兼容。此外,ZnPc-(BTBT)4具有高聚集趋势,是设计致密分子膜的有用工具。在钙钛矿型太阳能电池中用作100 mA cm -2以下的钙钛矿太阳能电池中的空穴传输材料时进行测试标准的AM 1.5G太阳能照明设备ZnPc-(BTBT)4的功率转换效率高达14.13%,而与实现高光伏性能通常需要的掺杂工艺无关。这项工作是迈向新的酞菁核芯工程化的第一步,以期获得用于有机电子和光电子学的坚固,高效,高性价比的材料。
更新日期:2020-05-05
down
wechat
bug