当前位置: X-MOL 学术Cryogenics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Simulation of Liquid Hydrogen Droplets “Group” Evaporation and Combustion
Cryogenics ( IF 1.8 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.cryogenics.2020.103091
Jialin Min , Jinrong Bao , Wei Chen , Tengxi Wang , Yafeng Lei

Abstract The leakage of LH from high-pressure storage tanks will trigger a series of behaviors such as group evaporation, dispersion, and combustion. In this study, hydrodynamic model combined with point source method (PSM) were tested for the analysis of “group interaction effects” involved in LH droplets evaporation and combustion processes. Three specific arrangement array cases: binary, equilateral triangular, and five-particle array were selected. With regard to binary array, in the case of pure evaporation ( T ∞ = 300 K), surface H2 mass fraction ( Y H 2 , w ) is equal to 0.77 on the side near the other droplet and 0.75 on the side away from the other droplet. When combustion occurs ( T ∞ = 3000 K), it takes 0.0752 s for binary droplets to finish evaporation. The flame front is located at 156 times the LH droplet radius (156 a0) away from the binary array midpoint and its temperature (Tf) can go up to 3885 K. The flame of the binary LH array changes from a common flame to two individual flames when the distance of the two droplets ( l 0 ) is equal to 364 times the droplet radius ( l 0 = 364 a 0 ). And when l 0 / a 0 is set to 1500, interactions between the two droplets disappears completely. In the cases of equilateral triangular array and five-particle array combustion ( T ∞ = 300 K), larger flames are formed due to local deficiency of oxygen. The flame front is located at 230 a0 away from the equilateral triangular array midpoint and 365 a0 away from the five-particle array midpoint, respectively.

中文翻译:

液态氢液滴“群”蒸发与燃烧的数值模拟

摘要 高压储罐中LH的泄漏会引发团蒸发、扩散、燃烧等一系列行为。在这项研究中,结合点源法 (PSM) 的流体动力学模型测试了 LH 液滴蒸发和燃烧过程中涉及的“群相互作用效应”的分析。选择了三种具体的排列阵列情况:二元阵列、等边三角形阵列和五粒子阵列。对于二元阵列,在纯蒸发的情况下 (T ∞ = 300 K),表面 H2 质量分数 ( YH 2 , w ) 在靠近另一个液滴的一侧等于 0.77,在远离另一个液滴的一侧等于 0.75水滴。当燃烧发生时 (T ∞ = 3000 K),二元液滴完成蒸发需要 0.0752 s。火焰前沿位于距离二元阵列中点 LH 液滴半径 (156 a0) 的 156 倍处,其温度 (Tf) 最高可达 3885 K。二元 LH 阵列的火焰从普通火焰变为两个单独的火焰。当两个液滴的距离 ( l 0 ) 等于液滴半径的 364 倍 ( l 0 = 364 a 0 ) 时,火焰会燃烧。当 l 0 / a 0 设置为 1500 时,两个液滴之间的相互作用完全消失。在等边三角形阵列和五粒子阵列燃烧(T ∞ = 300 K)的情况下,由于局部缺氧,形成较大的火焰。火焰锋面分别位于距等边三角形阵列中点 230 a0 处和距五粒子阵列中点 365 a0 处。当两个液滴的距离( l 0 )等于液滴半径的 364 倍( l 0 = 364 a 0 )时,二元 LH 阵列的火焰从一个普通火焰变为两个单独的火焰。当 l 0 / a 0 设置为 1500 时,两个液滴之间的相互作用完全消失。在等边三角形阵列和五粒子阵列燃烧(T ∞ = 300 K)的情况下,由于局部缺氧,形成较大的火焰。火焰锋面分别位于距等边三角形阵列中点 230 a0 处和距五粒子阵列中点 365 a0 处。当两个液滴的距离( l 0 )等于液滴半径的 364 倍( l 0 = 364 a 0 )时,二元 LH 阵列的火焰从一个普通火焰变为两个单独的火焰。当 l 0 / a 0 设置为 1500 时,两个液滴之间的相互作用完全消失。在等边三角形阵列和五粒子阵列燃烧(T ∞ = 300 K)的情况下,由于局部缺氧,形成较大的火焰。火焰锋面分别位于距等边三角形阵列中点 230 a0 处和距五粒子阵列中点 365 a0 处。在等边三角形阵列和五粒子阵列燃烧(T ∞ = 300 K)的情况下,由于局部缺氧,形成较大的火焰。火焰锋面分别位于距等边三角形阵列中点 230 a0 处和距五粒子阵列中点 365 a0 处。在等边三角形阵列和五粒子阵列燃烧(T ∞ = 300 K)的情况下,由于局部缺氧,形成较大的火焰。火焰锋面分别位于距等边三角形阵列中点 230 a0 处和距五粒子阵列中点 365 a0 处。
更新日期:2020-06-01
down
wechat
bug