当前位置: X-MOL 学术BMC Med. Genet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deciphering genetic signatures by whole exome sequencing in a case of co-prevalence of severe renal hypouricemia and diabetes with impaired insulin secretion.
BMC Medical Genetics ( IF 2.023 ) Pub Date : 2020-05-06 , DOI: 10.1186/s12881-020-01031-z
Motohiro Sekiya 1 , Takaaki Matsuda 1 , Yuki Yamamoto 1 , Yasuhisa Furuta 1 , Mariko Ohyama 1 , Yuki Murayama 1 , Yoko Sugano 1 , Yoshinori Ohsaki 1 , Hitoshi Iwasaki 1 , Naoya Yahagi 1 , Shigeru Yatoh 1 , Hiroaki Suzuki 1 , Hitoshi Shimano 1
Affiliation  

BACKGROUND Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9 gene cause RHUC type 1 (RHUC1) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2 and SLC17A1. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be involved in insulin secretion from pancreatic β-cells. On the other hand, a myriad of genes are responsible for the impaired insulin secretion independently of urate metabolism. CASE PRESENTATION We describe a 67 year-old Japanese man who manifested severe hypouricemia (0.7 mg/dl (3.8-7.0 mg/dl), 41.6 μmol/l (226-416 μmol/l)) and diabetes with impaired insulin secretion. His high urinary fractional excretion of urate (65.5%) and low urinary C-peptide excretion (25.7 μg/day) were compatible with the diagnosis of RHUC and impaired insulin secretion, respectively. Considering the fact that metabolic pathways regulating urates and glucose are closely interconnected, we attempted to delineate the genetic basis of the hypouricemia and the insulin secretion defect observed in this patient using whole exome sequencing. Intriguingly, we found homozygous Trp258* mutations in SLC22A12 gene causing RHUC1 while concurrent mutations reported to be associated with hyperuricemia were also discovered including ABCG2 (Gln141Lys) and SLC17A1 (Thr269Ile). SLC2A9, that also facilitates glucose transport, has been implicated to enhance insulin secretion, however, the non-synonymous mutations found in SLC2A9 gene of this patient were not dysfunctional variants. Therefore, we embarked on a search for causal mutations for his impaired insulin secretion, resulting in identification of multiple mutations in HNF1A gene (MODY3) as well as other genes that play roles in pancreatic β-cells. Among them, the Leu80fs in the homeobox gene NKX6.1 was an unreported mutation. CONCLUSION We found a case of RHUC1 carrying mutations in SLC22A12 gene accompanied with compensatory mutations associated with hyperuricemia, representing the first report showing coexistence of the mutations with opposed potential to regulate urate concentrations. On the other hand, independent gene mutations may be responsible for his impaired insulin secretion, which contains novel mutations in key genes in the pancreatic β-cell functions that deserve further scrutiny.

中文翻译:

在严重肾脏低尿酸血症和糖尿病并发胰岛素分泌不足的情况下,通过全外显子组测序来解密遗传标记。

背景技术肾脏低尿酸血症(RHUC)是一种遗传性疾病,其中SLC22A12基因和SLC2A9基因的突变分别导致RHUC 1型(RHUC1)和RHUC 2型(RHUC2)。这些基因调节肾小管对尿酸盐的重吸收,同时存在其他平衡尿酸盐净排泄的基因,包括ABCG2和SLC17A1。尿酸代谢与葡萄糖代谢紧密相关,SLC2A9基因可能与胰腺β细胞的胰岛素分泌有关。另一方面,无数的基因独立于尿酸代谢而导致胰岛素分泌受损。病例介绍我们描述了一个67岁的日本男子,他表现出严重的低尿酸血症(0.7 mg / dl(3.8-7.0 mg / dl),41.6μmol/ l(226-416μmol/ l))和糖尿病,胰岛素分泌受损。他的尿酸排泄率很高(65。5%)和低尿C肽排泄(25.7μg/天)分别与RHUC和胰岛素分泌受损的诊断兼容。考虑到调节尿酸盐和葡萄糖的代谢途径紧密相关的事实,我们尝试使用全外显子组测序来描述低尿酸血症的遗传基础和在该患者中观察到的胰岛素分泌缺陷。有趣的是,我们发现SLC22A12基因中的纯合Trp258 *突变引起RHUC1,同时还发现了与尿毒症相关的并发突变,包括ABCG2(Gln141Lys)和SLC17A1(Thr269Ile)。已经暗示也促进葡萄糖转运的SLC2A9增强胰岛素分泌,但是,在该患者的SLC2A9基因中发现的非同义突变不是功能障碍的变体。因此,我们着手寻找胰岛素分泌受损的因果突变,从而鉴定出HNF1A基因(MODY3)以及在胰腺β细胞中起作用的其他基因的多个突变。其中,同源盒基因NKX6.1中的Leu80fs是一个未报告的突变。结论我们发现了一例RHUC1在SLC22A12基因中携带突变并伴有高尿酸血症相关的代偿性突变,这是第一个报道,表明该突变并存且具有调节尿酸盐浓度的相反潜力。另一方面,独立的基因突变可能是导致他胰岛素分泌受损的原因,胰岛素分泌异常包含胰腺β细胞功能关键基因的新突变,值得进一步研究。从而鉴定出HNF1A基因(MODY3)以及在胰腺β细胞中起作用的其他基因的多个突变。其中,同源盒基因NKX6.1中的Leu80fs是一个未报告的突变。结论我们发现了一例RHUC1在SLC22A12基因中携带突变并伴有高尿酸血症相关的代偿性突变,这是第一个报道,表明该突变并存且具有调节尿酸盐浓度的相反潜力。另一方面,独立的基因突变可能是导致他胰岛素分泌受损的原因,胰岛素分泌异常包含胰腺β细胞功能关键基因的新突变,值得进一步研究。从而鉴定出HNF1A基因(MODY3)以及在胰腺β细胞中起作用的其他基因的多个突变。其中,同源盒基因NKX6.1中的Leu80fs是一个未报告的突变。结论我们发现了一例RHUC1在SLC22A12基因中携带突变并伴有高尿酸血症相关的代偿性突变,这是第一个报道,表明该突变并存且具有调节尿酸盐浓度的相反潜力。另一方面,独立的基因突变可能是导致他胰岛素分泌受损的原因,胰岛素分泌异常包含胰腺β细胞功能关键基因的新突变,值得进一步研究。1是未报告的突变。结论我们发现了一例RHUC1在SLC22A12基因中携带突变并伴有高尿酸血症相关的代偿性突变,这是第一个报道,表明该突变并存且具有调节尿酸盐浓度的相反潜力。另一方面,独立的基因突变可能是导致他胰岛素分泌受损的原因,胰岛素分泌异常包含胰腺β细胞功能关键基因的新突变,值得进一步研究。1是未报告的突变。结论我们发现了一例RHUC1在SLC22A12基因中携带突变并伴有高尿酸血症相关的代偿性突变,这是第一个报道,表明该突变并存且具有调节尿酸盐浓度的相反潜力。另一方面,独立的基因突变可能是导致他胰岛素分泌受损的原因,胰岛素分泌异常包含胰腺β细胞功能关键基因的新突变,值得进一步研究。
更新日期:2020-05-06
down
wechat
bug