当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile Preparation of an Excellent Mechanical Property Electroactive Biopolymer-Based Conductive Composite Film and Self-Enhancing Cellulose Hydrogel to Construct a High-Performance Wearable Supercapacitor
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-05-06 , DOI: 10.1021/acssuschemeng.0c01118
Zhiyuan Peng 1 , Wenbin Zhong 1
Affiliation  

Wearable supercapacitors, as one of the most important power supplies for wearable electronics, require excellent flexibility and deformability and a structure that is not easily delaminated. In this work, a robust ligninsulfonate/single-wall carbon nanotube film/holey reduced graphene oxide (Lig/SWCNT/HrGO) film with excellent tensile strength (121.8 MPa) and flexibility has been prepared via a filtration process followed by a hydrothermal treatment. During the filtration process, the SWCNT and small-size holey graphene oxide (HGO) can form a multilayer-like interconnected structure, and a part of HGO with a large specific surface area intersperses in the SWCNT network. HGO can be further reduced to HrGO, and the HrGO, Lig, and SWCNT can combine tightly to generate a compact multilayer-like structure during the hydrothermal process. High-strength, flexible, porous cellulose hydrogel (9.56 MPa) has been fabricated via a self-enhancing method through phase inversion of microcrystalline cellulose and partially dissolved bacterial cellulose mixture dispersion. A wearable supercapacitor is assembled by the Lig/SWCNT/HrGO films and self-enhancing cellulose hydrogel, which exhibits excellent tensile strength (112.3 MPa), areal capacitance (1121 mF cm–2), and energy density (77.8 μWh cm–2). More importantly, the areal capacitance shows a nearly linear increase with an increase in the mass of the film electrode. When the film electrode mass reaches up to 16.5 mg cm–2, the wearable supercapacitor delivers an ultrahigh areal capacitance of 4110 mF cm–2 and an energy density of 285.4 μWh cm–2. Remarkably, the wearable supercapacitor can sustain many types of arbitrary deformation and this outstanding flexibility is attributed to the strong interaction between wood-derived cellulose and Lig, which prevents the delamination of the electrodes and the separator. This work provides a facile approach for the preparation of a biopolymer-based, multilayer-like structure film and a self-enhancing method to obtain high-strength cellulose hydrogel, thus developing a biomimetic high-performance wearable energy storage device.

中文翻译:

机械性能优异的电活性生物聚合物基导电复合膜和自增强纤维素水凝胶的快速制备,以构建高性能可穿戴超级电容器

作为可穿戴电子设备最重要的电源之一,可穿戴超级电容器需要出色的柔韧性和可变形性,并且其结构不易分层。在这项工作中,通过过滤工艺和随后的水热处理,制备了具有优异的拉伸强度(121.8 MPa)和柔韧性的坚固的木质素磺酸盐/单壁碳纳米管膜/多孔还原氧化石墨烯(Lig / SWCNT / HrGO)膜。在过滤过程中,SWCNT和小尺寸的多孔氧化石墨烯(HGO)可以形成多层状的互连结构,并且具有较大比表面积的HGO的一部分散布在SWCNT网络中。HGO可以进一步还原为HrGO,并且HrGO,Lig和SWCNT可以紧密结合,在水热过程中生成紧凑的多层状结构。高强度,通过自增强方法,通过微晶纤维素和部分溶解的细菌纤维素混合物分散体的相转化,通过自增强方法制备了柔性的多孔纤维素水凝胶(9.56 MPa)。可穿戴超级电容器由Lig / SWCNT / HrGO薄膜和自增强纤维素水凝胶组装而成,具有出色的拉伸强度(112.3 MPa),面电容(1121 mF cm)–2)和能量密度(77.8μWhcm –2)。更重要的是,面积电容随着膜电极的质量的增加而显示出几乎线性的增加。当薄膜电极质量达到16.5 mg cm –2时,可穿戴式超级电容器可提供4110 mF cm –2的超高面电容和285.4μWhcm –2的能量密度。值得注意的是,可穿戴式超级电容器可以承受多种类型的任意变形,而这种出色的柔韧性归因于木材衍生的纤维素与Lig之间的强相互作用,从而防止了电极和隔板的分层。这项工作为制备基于生物聚合物的多层状结构膜提供了一种简便的方法,并为获得高强度纤维素水凝胶提供了一种自我增强的方法,从而开发了一种仿生的高性能可穿戴能量存储装置。
更新日期:2020-05-06
down
wechat
bug