当前位置: X-MOL 学术IEEE Trans. Vis. Comput. Graph. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Learning Physical Parameters and Detail Enhancement for Gaseous Scene Design Based on Data Guidance
IEEE Transactions on Visualization and Computer Graphics ( IF 4.7 ) Pub Date : 2020-04-29 , DOI: 10.1109/tvcg.2020.2991217
Chen Li , Sheng Qiu , Changbo Wang , Hong Qin

This article articulates a novel learning framework for both parameter estimation and detail enhancement for Eulerian gas based on data guidance. The key motivation of this article is to devise a new hybrid, grid-based simulation that could inherit modeling and simulation advantages from both physically-correct simulation methods and powerful data-driven methods, while combating existing difficulties exhibited in both approaches. We first employ a convolutional neural network (CNN) to estimate the physical parameters of gaseous phenomena in Eulerian settings, then we can use the just-learnt parameters to re-simulate (with or without artists’ guidance) for specific scenes with flexible coupling effects. Next, a second CNN is adopted to reconstruct the high-resolution velocity field to guide a fast re-simulation on the finer grid, achieving richer and more realistic details with little extra computational expense. From the perspective of physics-based simulation, our trained networks respect temporal coherence and physical constraints. From the perspective of the data-driven machine-learning approaches, our network design aims at extracting a meaningful parameters and reconstructing visually realistic details. Additionally, our implementation based on parallel acceleration could significantly enhance the computational performance of every involved module. Our comprehensive experiments confirm the controllability, effectiveness, and accuracy of our novel approach when producing various gaseous scenes with rich details for widespread graphics applications.

中文翻译:

基于数据制导的气态场景设计物理参数学习与细节增强

本文阐述了一种基于数据指导的欧拉气体参数估计和细节增强的新型学习框架。本文的主要动机是设计一种新的基于网格的混合模拟,它可以继承物理上正确的模拟方法和强大的数据驱动方法的建模和模拟优势,同时克服两种方法中存在的困难。我们首先使用卷积神经网络 (CNN) 来估计欧拉设置中气体现象的物理参数,然后我们可以使用刚刚学习的参数对具有灵活耦合效果的特定场景进行重新模拟(有或没有艺术家的指导) . 接下来,采用第二个 CNN 来重建高分辨率速度场,以指导在更精细的网格上进行快速重新模拟,以很少的额外计算开销实现更丰富、更逼真的细节。从基于物理的模拟的角度来看,我们训练有素的网络尊重时间相干性和物理约束。从数据驱动的机器学习方法的角度来看,我们的网络设计旨在提取有意义的参数并重建视觉逼真的细节。此外,我们基于并行加速的实现可以显着提高每个相关模块的计算性能。我们的综合实验证实了我们的新方法在为广泛的图形应用生成具有丰富细节的各种气体场景时的可控性、有效性和准确性。我们训练有素的网络尊重时间连贯性和物理约束。从数据驱动的机器学习方法的角度来看,我们的网络设计旨在提取有意义的参数并重建视觉逼真的细节。此外,我们基于并行加速的实现可以显着提高每个相关模块的计算性能。我们的综合实验证实了我们的新方法在为广泛的图形应用生成具有丰富细节的各种气体场景时的可控性、有效性和准确性。我们训练有素的网络尊重时间连贯性和物理约束。从数据驱动的机器学习方法的角度来看,我们的网络设计旨在提取有意义的参数并重建视觉逼真的细节。此外,我们基于并行加速的实现可以显着提高每个相关模块的计算性能。我们的综合实验证实了我们的新方法在为广泛的图形应用生成具有丰富细节的各种气体场景时的可控性、有效性和准确性。此外,我们基于并行加速的实现可以显着提高每个相关模块的计算性能。我们的综合实验证实了我们的新方法在为广泛的图形应用生成具有丰富细节的各种气体场景时的可控性、有效性和准确性。此外,我们基于并行加速的实现可以显着提高每个相关模块的计算性能。我们的综合实验证实了我们的新方法在为广泛的图形应用生成具有丰富细节的各种气体场景时的可控性、有效性和准确性。
更新日期:2020-04-29
down
wechat
bug