当前位置: X-MOL 学术Curr. Opin. Immunol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co-evolution of mutagenic genome editors and vertebrate adaptive immunity.
Current Opinion in Immunology ( IF 6.6 ) Pub Date : 2020-04-27 , DOI: 10.1016/j.coi.2020.03.001
Inês Trancoso 1 , Ryo Morimoto 1 , Thomas Boehm 1
Affiliation  

The adaptive immune systems of all vertebrates rely on self-DNA mutating enzymes to assemble their antigen receptors in lymphocytes of their two principal lineages. In jawed vertebrates, the RAG1/2 recombinase directs V(D)J recombination of B cell and T cell receptor genes, whereas the activation-induced cytidine deaminase AID engages in their secondary modification. The recombination activating genes (RAG) 1 and 2 evolved from an ancient transposon-encoded genome modifier into a self-DNA mutator serving adaptive immunity; this was possible as a result of domestication, involving several changes in RAG1 and RAG2 proteins suppressing transposition and instead facilitating-coupled cleavage and recombination. By contrast, recent evidence supports the notion that the antigen receptors of T-like and B-like cells of jawless vertebrates, designated variable lymphocyte receptors (VLRs), are somatically assembled through a process akin to gene conversion that is believed to be dependent on the activities of distant relatives of AID, the cytidine deaminases CDA1 and CDA2, respectively. It appears, therefore, that the precursors of AID and CDAs underwent a domestication process that changed their target range from foreign nucleic acids to self-DNA; this multi-step evolutionary process ensured that the threat to host genome integrity was minimized. Here, we review recent findings illuminating the evolutionary steps associated with the domestication of the two groups of genome editors, RAG1/2 and cytidine deaminases, indicating how they became the driving forces underlying the emergence of vertebrate adaptive immune systems.

中文翻译:

诱变基因组编辑器和脊椎动物适应性免疫的共同进化。

所有脊椎动物的适应性免疫系统都依赖于自身 DNA 突变酶在其两个主要谱系的淋巴细胞中组装它们的抗原受体。在有颌脊椎动物中,RAG1/2 重组酶指导 B 细胞和 T 细胞受体基因的 V(D)J 重组,而活化诱导的胞苷脱氨酶 AID 参与它们的二次修饰。重组激活基因 (RAG) 1 和 2 从古老的转座子编码基因组修饰符进化为提供适应性免疫的自身 DNA 突变子;这可能是驯化的结果,涉及 RAG1 和 RAG2 蛋白的一些变化,抑制转座,而是促进偶联的切割和重组。相比之下,最近的证据支持无颌脊椎动物 T 样和 B 样细胞的抗原受体的观点,指定的可变淋巴细胞受体 (VLR) 通过类似于基因转换的过程进行体细胞组装,该过程被认为依赖于 AID 的远亲,分别是胞苷脱氨酶 CDA1 和 CDA2 的活性。因此,似乎 AID 和 CDA 的前体经历了一个驯化过程,将它们的目标范围从外来核酸转变为自身 DNA;这种多步进化过程确保了对宿主基因组完整性的威胁最小化。在这里,我们回顾了最近的发现,阐明了与两组基因组编辑器 RAG1/2 和胞苷脱氨酶的驯化相关的进化步骤,表明它们如何成为脊椎动物适应性免疫系统出现的驱动力。通过类似于基因转换的过程进行体细胞组装,该过程被认为依赖于 AID 的远亲,分别是胞苷脱氨酶 CDA1 和 CDA2 的活性。因此,似乎 AID 和 CDA 的前体经历了一个驯化过程,将它们的目标范围从外来核酸转变为自身 DNA;这种多步进化过程确保对宿主基因组完整性的威胁最小化。在这里,我们回顾了最近的发现,阐明了与两组基因组编辑器 RAG1/2 和胞苷脱氨酶的驯化相关的进化步骤,表明它们如何成为脊椎动物适应性免疫系统出现的驱动力。通过类似于基因转换的过程进行体细胞组装,该过程被认为依赖于 AID 的远亲,分别是胞苷脱氨酶 CDA1 和 CDA2 的活性。因此,似乎 AID 和 CDA 的前体经历了一个驯化过程,将它们的目标范围从外来核酸转变为自身 DNA;这种多步进化过程确保了对宿主基因组完整性的威胁最小化。在这里,我们回顾了最近的发现,阐明了与两组基因组编辑器 RAG1/2 和胞苷脱氨酶的驯化相关的进化步骤,表明它们如何成为脊椎动物适应性免疫系统出现的驱动力。
更新日期:2020-04-27
down
wechat
bug