当前位置: X-MOL 学术J. Comput. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DNA Methylation Heterogeneity Induced by Collaborations Between Enhancers.
Journal of Computational Biology ( IF 1.4 ) Pub Date : 2020-12-04 , DOI: 10.1089/cmb.2019.0413
Yusong Ye 1 , Zhuoqin Yang 1 , Jinzhi Lei 2
Affiliation  

During mammalian embryo development, reprogramming of DNA methylation plays important roles in the erasure of parental epigenetic memory and the establishment of naive pluripotent cells. Multiple enzymes that regulate the processes of methylation and demethylation work together to shape the pattern of genome-scale DNA methylation and guide the process of cell differentiation. Recent availability of methylome information from single-cell whole genome bisulfite sequencing (scBS-seq) provides an opportunity to study DNA methylation dynamics in the whole genome in individual cells, which reveal the heterogeneous methylation distributions of enhancers in embryo stem cells. In this study, we developed a computational model of enhancer methylation inheritance to study the dynamics of genome-scale DNA methylation reprogramming during exit from pluripotency. The model enables us to track genome-scale DNA methylation reprogramming at single-cell level during the embryo development process and reproduce the DNA methylation heterogeneity reported by scBS-seq. Model simulations show that DNA methylation heterogeneity is an intrinsic property driven by cell division along the development process, and the collaboration between neighboring enhancers is required for heterogeneous methylation. Our study suggests that the mechanism of genome-scale oscillation might not be necessary for the DNA methylation heterogeneity during exit from pluripotency.

中文翻译:

增强子之间的协作诱导的 DNA 甲基化异质性。

在哺乳动物胚胎发育过程中,DNA 甲基化的重编程在父母表观遗传记忆的擦除和幼稚多能细胞的建立中起着重要作用。调节甲基化和去甲基化过程的多种酶协同作用,形成基因组规模的 DNA 甲基化模式并指导细胞分化过程。最近从单细胞全基因组亚硫酸氢盐测序 (scBS-seq) 获得的甲基化组信息为研究单个细胞中全基因组中的 DNA 甲基化动力学提供了机会,这揭示了胚胎干细胞中增强子的异质甲基化分布。在这项研究中,我们开发了增强子甲基化遗传的计算模型,以研究退出多能性期间基因组规模 DNA 甲基化重编程的动态。该模型使我们能够在胚胎发育过程中在单细胞水平上跟踪基因组规模的 DNA 甲基化重编程,并重现 scBS-seq 报告的 DNA 甲基化异质性。模型模拟表明,DNA 甲基化异质性是细胞在发育过程中分裂驱动的内在特性,异质甲基化需要相邻增强子之间的协作。我们的研究表明,在退出多能性过程中,DNA 甲基化异质性可能不需要基因组规模振荡的机制。该模型使我们能够在胚胎发育过程中在单细胞水平上跟踪基因组规模的 DNA 甲基化重编程,并重现 scBS-seq 报告的 DNA 甲基化异质性。模型模拟表明,DNA 甲基化异质性是细胞在发育过程中分裂驱动的内在特性,异质甲基化需要相邻增强子之间的协作。我们的研究表明,在退出多能性过程中,DNA 甲基化异质性可能不需要基因组规模振荡的机制。该模型使我们能够在胚胎发育过程中在单细胞水平上跟踪基因组规模的 DNA 甲基化重编程,并重现 scBS-seq 报告的 DNA 甲基化异质性。模型模拟表明,DNA 甲基化异质性是细胞分裂沿发展过程驱动的内在特性,异质甲基化需要相邻增强子之间的协作。我们的研究表明,在退出多能性过程中,DNA 甲基化异质性可能不需要基因组规模振荡的机制。异质甲基化需要相邻增强子之间的协作。我们的研究表明,在退出多能性过程中,DNA 甲基化异质性可能不需要基因组规模振荡的机制。异质甲基化需要相邻增强子之间的协作。我们的研究表明,在退出多能性过程中,DNA 甲基化异质性可能不需要基因组规模振荡的机制。
更新日期:2020-12-15
down
wechat
bug