当前位置: X-MOL 学术IEEE Trans. Biomed. Circuits Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Digital Controlled Pulse Generator for a Possible Tumor Therapy Combining Irreversible Electroporation With Nanosecond Pulse Stimulation.
IEEE Transactions on Biomedical Circuits and Systems ( IF 3.8 ) Pub Date : 2020-04-17 , DOI: 10.1109/tbcas.2020.2987376
Xin Rao , Xiaodong Chen , Jun Zhou , Lingling Sun , Jun Liu

The irreversible electroporation with microsecond electric pulses is a new ablation technique adopted in the tumor therapy worldwide. On the other hand, the nsPEF (nanosecond pulsed electric field) has been proved to provide a means to induce immunogenic cell death and elicits antitumor immunity, which is under intensive in-vitro and in-vivo studies and in clinical trials. Normally, one needs two different types of electric pulse generators for producing the pulses in the ranges of nanosecond and microsecond, respectively. In order to realize these two types of tumor treatments in complementary and optimize electrical pulse parameters, we have developed a compact high-voltage pulse generator with a wide pulse width tuning range, based on a capacitor discharging configuration digitally controlled by a silicon carbide MOSFET switching array through a pair of optic-coupler drivers. The developed digital pulse generator is capable of adjusting: pulse width over 100ns-100μs, voltage over 0-2kV and repetition rate up to 1.2 kHz. The pulse generator is designed in simulation, implemented and verified in the in vitro and in vivo experiments. The pulse generator is shown to deliver a complementary treatment on Murine melanoma B16 cell lines, i.e. triggering the cell early apoptosis under the 300ns pulse stimulation while a complete killing under the 100ns pulses. The pulse generator is further demonstrated to induce antitumor immunity in a preliminary in vivo study on the mice model.

中文翻译:

数字控制脉冲发生器,用于将不可逆电穿孔与纳秒脉冲刺激相结合的可能的肿瘤治疗。

微秒电脉冲的不可逆电穿孔是全世界肿瘤治疗中采用的一种新的消融技术。另一方面,nsPEF(纳秒脉冲电场)已被证明提供了一种诱导免疫原性细胞死亡并引发抗肿瘤免疫的手段,目前正在深入的体外和体内研究以及临床试验中。通常,人们需要两种不同类型的电脉冲发生器以分别产生纳秒和微秒范围内的脉冲。为了互补地实现这两种类型的肿瘤治疗并优化电脉冲参数,我们开发了一种紧凑的高压脉冲发生器,其脉冲宽度调节范围宽,基于由碳化硅MOSFET开关阵列通过一对光耦合器驱动器进行数字控制的电容器放电配置。开发的数字脉冲发生器能够调节:脉冲宽度超过100ns-100μs,电压超过0-2kV,重复频率高达1.2 kHz。脉冲发生器是在仿真中设计的,并在体外和体内实验中实现和验证。脉冲发生器显示出对鼠黑素瘤B16细胞系的补充治疗,即在300ns脉冲刺激下触发细胞早期凋亡,而在100ns脉冲下完全杀死细胞。在小鼠模型的初步体内研究中,进一步证明了脉冲发生器可诱导抗肿瘤免疫。脉冲宽度超过100ns-100μs,电压超过0-2kV,重复频率高达1.2 kHz。脉冲发生器是在仿真中设计的,并在体外和体内实验中实现和验证。脉冲发生器显示出对鼠黑素瘤B16细胞系的补充治疗,即在300ns脉冲刺激下触发细胞早期凋亡,而在100ns脉冲下完全杀死细胞。在小鼠模型的初步体内研究中,进一步证明了脉冲发生器可诱导抗肿瘤免疫。脉冲宽度超过100ns-100μs,电压超过0-2kV,重复频率高达1.2 kHz。脉冲发生器是在仿真中设计的,并在体外和体内实验中实现和验证。脉冲发生器显示出对鼠黑素瘤B16细胞系的补充治疗,即在300ns脉冲刺激下触发细胞早期凋亡,而在100ns脉冲下完全杀死细胞。在小鼠模型的初步体内研究中,进一步证明了脉冲发生器可诱导抗肿瘤免疫。在300ns脉冲刺激下触发细胞早期凋亡,而在100ns脉冲下完全杀死细胞。在小鼠模型的初步体内研究中,进一步证明了脉冲发生器可诱导抗肿瘤免疫。在300ns脉冲刺激下触发细胞早期凋亡,而在100ns脉冲下完全杀死细胞。在小鼠模型的初步体内研究中,进一步证明了脉冲发生器可诱导抗肿瘤免疫。
更新日期:2020-04-17
down
wechat
bug