当前位置: X-MOL 学术Glob. Chall. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoengineered Advanced Materials for Enabling Hydrogen Economy: Functionalized Graphene-Incorporated Cupric Oxide Catalyst for Efficient Solar Hydrogen Production.
Global Challenges ( IF 4.4 ) Pub Date : 2020-01-24 , DOI: 10.1002/gch2.201900087
Goutam Kumar Dalapati 1, 2, 3, 4 , Saeid Masudy-Panah 5, 6 , Roozbeh Siavash Moakhar 7 , Sabyasachi Chakrabortty 8 , Siddhartha Ghosh 1 , Ajay Kushwaha 9 , Reza Katal 10 , Chin Sheng Chua 2 , Gong Xiao 5, 6 , Sudhiranjan Tripathy 2 , Seeram Ramakrishna 4
Affiliation  

Cupric oxide (CuO) is a promising candidate as a photocathode for visible‐light‐driven photo‐electrochemical (PEC) water splitting. However, the stability of the CuO photocathode against photo‐corrosion is crucial for developing CuO‐based PEC cells. This study demonstrates a stable and efficient photocathode through the introduction of graphene into CuO film (CuO:G). The CuO:G composite electrodes are prepared using graphene‐incorporated CuO sol–gel solution via spin‐coating techniques. The graphene is modified with two different types of functional groups, such as amine (NH2) and carboxylic acid (COOH). The COOH‐functionalized graphene incorporation into CuO photocathode exhibits better stability and also improves the photocurrent generation compare to control CuO electrode. In addition, COOH‐functionalized graphene reduces the conversion of CuO phase into cuprous oxide (Cu2O) during photo‐electrochemical reaction due to effective charge transfer and leads to a more stable photocathode. The reduction of CuO to Cu2O phase is significantly lesser in CuO:G‐COOH as compared to CuO and CuO:G‐NH2 photocathodes. The photocatalytic degradation of methylene blue (MB) by CuO, CuO:G‐NH2 and CuO:G‐COOH is also investigated. By integrating CuO:G‐COOH photocathode with a sol–gel‐deposited TiO2 protecting layer and Au–Pd nanostructure, stable and efficient photocathode are developed for solar hydrogen generation.

中文翻译:

用于实现氢经济的纳米工程先进材料:用于高效太阳能制氢的功能化石墨烯掺入氧化铜催化剂。

氧化铜(CuO)是作为可见光驱动光电化学(PEC)水分解的光电阴极的有前途的候选者。然而,CuO 光电阴极的抗光腐蚀稳定性对于开发 CuO 基 PEC 电池至关重要。这项研究通过将石墨烯引入 CuO 薄膜 (CuO:G) 展示了一种稳定高效的光电阴极。CuO:G 复合电极是通过旋涂技术使用掺有石墨烯的 CuO 溶胶-凝胶溶液制备的。石墨烯被两种不同类型的官能团修饰,例如胺(NH 2)和羧酸(COOH)。与对照 CuO 电极相比,将  COOH功能化石墨烯纳入 CuO 光电阴极表现出更好的稳定性,并且还提高了光电流的产生。此外,由于有效的电荷转移, COOH官能化石墨烯在光电化学反应过程中减少了CuO相向氧化亚铜(Cu 2 O)的转化,从而形成更稳定的光电阴极。与CuO 和 CuO :G-NH 2光电阴极相比,CuO:G-COOH 中 CuO 向 Cu 2 O 相的还原明显较少。还研究了CuO、CuO:G-NH 2和 CuO:G-COOH对亚甲基蓝 (MB) 的光催化降解。通过将CuO:G-COOH光阴极与溶胶-凝胶沉积的TiO 2保护层和Au-Pd纳米结构相结合,开发出稳定高效的用于太阳能制氢的光阴极。
更新日期:2020-01-24
down
wechat
bug