当前位置: X-MOL 学术J. Aerosol Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A parallelized tool to calculate the electrical mobility of charged aerosol nanoparticles and ions in the gas phase
Journal of Aerosol Science ( IF 3.9 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.jaerosci.2020.105570
Joshua Coots , Viraj Gandhi , Tunde Onakoya , Xi Chen , Carlos Larriba-Andaluz

Abstract Electrical Mobility is a transport property that describes a particle behavior in the gas phase. When dealing with the free molecular regime, ascertaining the shape of a nanoparticle or an ion directly from measurements of mobility becomes quite difficult as the particle no longer can be assumed to have spherical shape. Here we propose an efficient parallelized tool, IMoS, that makes use of all-atom models to calculate the mobility of nanoparticles in a variety of gases. The program allows for different types of calculations that range from the efficient Projection Approximation (PA) algorithm to the 4-6-12 Lennard-Jones potential Trajectory Method. It also includes a diffuse inelastic simulation that achieves Millikan's predicted 1.36 value over PA. When compared to experimental results, the error of the most efficient calculations is shown to be approximately 2–4% on average.

中文翻译:

用于计算气相中带电气溶胶纳米粒子和离子的电迁移率的并行工具

摘要 电迁移率是描述粒子在气相中的行为的一种传输特性。在处理自由分子状态时,直接从迁移率的测量中确定纳米颗粒或离子的形状变得非常困难,因为不再可以假设颗粒具有球形。在这里,我们提出了一种高效的并行化工具 IMoS,它利用全原子模型来计算纳米粒子在各种气体中的迁移率。该程序允许进行不同类型的计算,从高效的投影近似 (PA) 算法到 4-6-12 Lennard-Jones 潜在轨迹方法。它还包括一个弥散非弹性模拟,该模拟实现了密立根对 PA 的预测值 1.36。与实验结果相比,
更新日期:2020-09-01
down
wechat
bug