当前位置: X-MOL 学术Mol. Syst. Des. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Connecting molecular mechanisms of biofilm formation and functional biomaterials
Molecular Systems Design & Engineering ( IF 3.2 ) Pub Date : 2020-05-04 , DOI: 10.1039/d0me00001a
Samuel B. Lum 1, 2, 3, 4, 5 , Robert Osgood 1, 2, 3, 4
Affiliation  

Biofilms are arguably the root cause of most human infections, imposing a high level of public health concern. Biofilm growth is a lifestyle characterized by co-aggregation of organisms and secretion of an extracellular matrix (ECM) that facilitates attachment to a surface. They are responsible for up to 80% of all healthcare-acquired infections (National Institutes of Health) with the majority being diagnosed as device associated. They are multi-compositional structures that are influenced by surrounding biological, mechanical and chemical variation in their microenvironment. Within the confines of biofilms, microorganisms are capable of promoting increased rates of antimicrobial resistance. When observing biofilm physiology in the presence of a biomaterial, the attachment process and intermolecular activity, contribute to significant genotypic responses. When utilized as part of medical devices, antimicrobial biomaterials seek to prevent biofilm infections, however, the complexity of biofilms make it difficult to extract useful results necessary to improve material properties without consideration of bacterial molecular processes. This interdisciplinary article emphasizes molecular mechanisms as a pertinent consideration in evaluating biofilm growth on biomaterials. It also advocates for standardizing in vitro biofilm models as opposed to animal models. Such models include microfluidic systems, that can be engineered to scale and mimic infection-relevant microenvironments. The connection of advances in antibiofilm surface modifications and high-throughput sequencing make way for new and important biomaterial assessments. We endeavor to establish a gold standard model for in vitro biomaterials testing that incorporates the complexity of healthcare-associated infections in order to guide medical device design and improve disease outcomes.

中文翻译:

生物膜形成与功能生物材料的连接分子机理

生物膜可以说是大多数人类感染的根本原因,这引起了公众高度关注。生物膜的生长是一种生活方式,其特征在于生物体的共同聚集和促进附着在表面上的细胞外基质(ECM)的分泌。他们负责所有医疗保健获得性感染中的80%(美国国立卫生研究院),其中大多数被诊断为与设备相关。它们是多成分的结构,受其微环境中周围生物,机械和化学变化的影响。在生物膜的范围内,微生物能够促进增加的抗微生物性耐药率。在存在生物材料,附着过程和分子间活性的情况下观察生物膜生理学时,有助于显着的基因型反应。当用作医疗设备的一部分时,抗菌生物材料试图防止生物膜感染,但是,生物膜的复杂性使得难以在不考虑细菌分子过程的情况下提取改善材料性能所必需的有用结果。这篇跨学科的文章强调分子机制是评估生物材料上生物膜生长的相关考虑因素。它还倡导标准化 这篇跨学科的文章强调分子机制是评估生物材料上生物膜生长的相关考虑因素。它还倡导标准化 这篇跨学科的文章强调了分子机制作为评估生物材料上生物膜生长的相关考虑因素。它还倡导标准化与动物模型相反的体外生物膜模型。这样的模型包括微流体系统,可以对其进行设计以扩展和模拟与感染相关的微环境。抗生物膜表面修饰和高通量测序技术的进步之间的联系为新的重要生物材料评估铺平了道路。我们努力建立用于体外生物材料测试的金标准模型,模型结合了与医疗保健相关的感染的复杂性,以指导医疗设备的设计并改善疾病的结果。
更新日期:2020-05-04
down
wechat
bug