当前位置: X-MOL 学术Nat. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Non-reciprocal electronics based on temporal modulation
Nature Electronics ( IF 33.7 ) Pub Date : 2020-05-04 , DOI: 10.1038/s41928-020-0400-5
Aravind Nagulu , Negar Reiskarimian , Harish Krishnaswamy

In general, reciprocity requires that signals travel in the same manner in both forward and reverse directions. It governs the behaviour of the majority of electronic circuits and components, imposing severe restrictions on how they operate. Components that violate reciprocity, such as gyrators, isolators and circulators, are, however, of use in many different electronic applications. Non-reciprocal electronic components have typically been implemented using ferrites, but such magnetic materials cannot be integrated in modern semiconductor fabrication processes and magnetic non-reciprocal components remain bulky and expensive. Creating non-reciprocal components without the use of magnetic materials has a long history, but has recently been reinvigorated due to advancements in semiconductor technology. Here we review the development of non-reciprocal devices and the development of non-magnetic non-reciprocal electronics, focusing on devices based on temporal modulation, which arguably exhibit the greatest potential. We consider approaches based on temporal modulation of permittivity and conductivity, as well as hybrid acoustic–electronic components, which have applications including high-power transmitters for communications, simultaneous transmit and receive radars, and full-duplex wireless radios. We also explore superconducting non-reciprocal components based on temporal modulation of permeability for potential applications in quantum computing and consider the key future challenges in the field.



中文翻译:

基于时间调制的不可逆电子学

通常,互惠性要求信号以相同的方式在正向和反向传播。它控制着大多数电子电路和组件的行为,对它们的操作方式施加了严格的限制。但是,在许多不同的电子应用中都使用了违反互惠性的组件,例如回转器,隔离器和循环器。不可逆的电子组件通常使用铁氧体来实现,但是这种磁性材料无法集成到现代半导体制造工艺中,不可逆的磁性组件仍然庞大且昂贵。在不使用磁性材料的情况下创建不可逆的组件已有很长的历史,但是由于半导体技术的进步,最近已重新焕发活力。在这里,我们将重点介绍基于时间调制的设备,这些设备可能具有最大的潜力,它回顾了不可逆设备的发展以及非磁性不可逆电子设备的发展。我们考虑基于介电常数和电导率的时间调制以及混合声电组件的方法,这些方法的应用包括用于通信的高功率发射机,同时发送和接收雷达以及全双工无线电设备。我们还将探索基于磁导率的时间调制的超导不可逆组件,以用于量子计算中的潜在应用,并考虑该领域未来的关键挑战。可以说具有最大的潜力。我们考虑基于介电常数和电导率的时间调制以及混合声电组件的方法,这些方法的应用包括用于通信的高功率发射机,同时发送和接收雷达以及全双工无线电设备。我们还将探索基于磁导率的时间调制的超导不可逆组件,以用于量子计算中的潜在应用,并考虑该领域未来的关键挑战。可以说具有最大的潜力。我们考虑基于介电常数和电导率的时间调制以及混合声电组件的方法,这些方法的应用包括用于通信的高功率发射机,同时发送和接收雷达以及全双工无线电设备。我们还将探索基于磁导率的时间调制的超导不可逆组件,以用于量子计算中的潜在应用,并考虑该领域未来的关键挑战。

更新日期:2020-05-04
down
wechat
bug