当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchical highly ordered SnO 2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing
Microsystems & Nanoengineering ( IF 7.3 ) Pub Date : 2020-05-04 , DOI: 10.1038/s41378-020-0142-6
Li-Yuan Zhu 1 , Kai-Ping Yuan 1 , Jia-He Yang 1 , Cheng-Zhou Hang 1 , Hong-Ping Ma 1 , Xin-Ming Ji 1 , Anjana Devi 2 , Hong-Liang Lu 1 , David Wei Zhang 1
Affiliation  

Highly sensitive and selective hydrogen sulfide (H2S) sensors based on hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires (NWs) were synthesized via a sequential process combining hard template processing, atomic-layer deposition, and hydrothermal processing. The hierarchical sensing materials were prepared in situ on microelectromechanical systems, which are expected to achieve high-performance gas sensors with superior sensitivity, long-term stability and repeatability, as well as low power consumption. Specifically, the hierarchical nanobowl SnO2@ZnO NW sensor displayed a high sensitivity of 6.24, a fast response and recovery speed (i.e., 14 s and 39 s, respectively), and an excellent selectivity when detecting 1 ppm H2S at 250 °C, whose rate of resistance change (i.e., 5.24) is 2.6 times higher than that of the pristine SnO2 nanobowl sensor. The improved sensing performance could be attributed to the increased specific surface area, the formation of heterojunctions and homojunctions, as well as the additional reaction between ZnO and H2S, which were confirmed by electrochemical characterization and band alignment analysis. Moreover, the well-structured hierarchical sensors maintained stable performance after a month, suggesting excellent stability and repeatability. In summary, such well-designed hierarchical highly ordered nanobowl SnO2@ZnO NW gas sensors demonstrate favorable potential for enhanced sensitive and selective H2S detection with long-term stability and repeatability.



中文翻译:

用于超灵敏和选择性硫化氢气体传感的分层高度有序的 SnO 2 纳米碗支化 ZnO 纳米线

通过结合硬模板处理、原子层沉积和水热处理的顺序工艺合成基于分级高度有序的 SnO 2纳米碗支化 ZnO 纳米线 (NW) 的高灵敏度和选择性硫化氢 (H 2 S) 传感器。分层传感材料在微机电系统上原位制备,有望实现具有优异灵敏度、长期稳定性和可重复性以及低功耗的高性能气体传感器。具体而言,分级纳米碗 SnO 2 @ZnO NW 传感器显示出 6.24 的高灵敏度、快速的响应和恢复速度(即分别为 14 s 和 39 s),以及在检测 1 ppm H 2时具有出色的选择性S 在 250 °C 时,其电阻变化率(即 5.24)是原始 SnO 2纳米碗传感器的2.6 倍。传感性能的提高可归因于比表面积的增加、异质结和同质结的形成,以及 ZnO 和 H 2 S之间的额外反应,这些都通过电化学表征和能带排列分析得到证实。此外,结构良好的分层传感器在一个月后保持稳定的性能,表明其具有出色的稳定性和可重复性。总之,这种精心设计的分层高度有序的纳米碗 SnO 2 @ZnO NW 气体传感器显示出提高灵敏度和选择性 H 2 的有利潜力S 检测具有长期稳定性和可重复性。

更新日期:2020-05-04
down
wechat
bug