当前位置: X-MOL 学术J. Opt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of angular diffractive lenses with extended depth of focus
Journal of Optics ( IF 2.0 ) Pub Date : 2020-05-04 , DOI: 10.1088/2040-8986/ab8614
Luis Miguel Sanchez-Brea 1 , Francisco Jose Torcal-Milla 2 , Jesus del Hoyo 1 , Alexander Cuadrado 3 , Jose Antonio Gomez-Pedrero 3
Affiliation  

Conventional refractive lenses concentrate the incident light at focal distance. A narrow beam waist can be achieved by increasing the lens numerical aperture, but strongly reduces the depth of focus. In this work, we explore diffractive lenses designs, with fast angular variation of the focal distance, that produce both a narrow beam waist and a long depth of focus. We predict the focusing properties of the diffractive lenses with a simple analytical model based on an incoherent superposition of standard lenses with different focal distances. The histogram of the local focal distances is used to determine the weights in the superposition. Our model optimizes the shape of the diffractive lenses, in order to extend the depth of focus, which corresponds to the lotus lens. We verify our results with numerical simulations based on Rayleigh–Sommerfeld approach. Experimentally, we validate our analytical and numerical solutions with a spatial light modulator. We have found configurations for the lotus lens where the depth of focus is significantly incremented with only a slight increment of the focal width. For example, we increased the depth of focus from 7.6 mm to 37.2 mm while the beam waist varied from 35.0 microns to 51.6 microns for a lens with diameter D = 4 mm, and focal distance f' = 125 mm. These results may find applications in the design of contact and intraocular lenses with extended depth of focus, laser focus generators, and imaging applications where extended depth of focus is needed.

中文翻译:

具有扩展焦深的角衍射透镜的优化

传统的折射透镜将入射光集中在焦距处。通过增加透镜数值孔径可以实现窄束腰,但会大大降低焦深。在这项工作中,我们探索了具有快速焦距角变化的衍射透镜设计,可产生窄束腰和长焦深。我们基于具有不同焦距的标准透镜的非相干叠加,使用简单的分析模型预测衍射透镜的聚焦特性。局部焦距的直方图用于确定叠加中的权重。我们的模型优化了衍射透镜的形状,以扩展与莲花透镜相对应的焦深。我们使用基于 Rayleigh-Sommerfeld 方法的数值模拟来验证我们的结果。通过实验,我们使用空间光调制器验证了我们的分析和数值解决方案。我们发现了莲花透镜的配置,其中焦深显着增加,而焦距仅略微增加。例如,对于直径 D = 4 mm、焦距 f' = 125 mm 的透镜,我们将焦深从 7.6 毫米增加到 37.2 毫米,而光束腰则从 35.0 微米增加到 51.6 微米。这些结果可用于设计具有扩展焦深的隐形眼镜和人工晶状体、激光聚焦发生器以及需要扩展焦深的成像应用。我们发现了莲花透镜的配置,其中焦深显着增加,而焦距仅略微增加。例如,对于直径 D = 4 mm、焦距 f' = 125 mm 的透镜,我们将焦深从 7.6 毫米增加到 37.2 毫米,而光束腰则从 35.0 微米增加到 51.6 微米。这些结果可用于设计具有扩展焦深的隐形眼镜和人工晶状体、激光聚焦发生器以及需要扩展焦深的成像应用。我们发现了莲花透镜的配置,其中焦深显着增加,而焦距仅略微增加。例如,对于直径 D = 4 mm、焦距 f' = 125 mm 的透镜,我们将焦深从 7.6 毫米增加到 37.2 毫米,而光束腰则从 35.0 微米增加到 51.6 微米。这些结果可用于设计具有扩展焦深的隐形眼镜和人工晶状体、激光聚焦发生器以及需要扩展焦深的成像应用。对于直径 D = 4 mm、焦距 f' = 125 mm 的透镜,为 6 微米。这些结果可用于设计具有扩展焦深的隐形眼镜和人工晶状体、激光聚焦发生器以及需要扩展焦深的成像应用。对于直径 D = 4 mm、焦距 f' = 125 mm 的透镜,为 6 微米。这些结果可用于设计具有扩展焦深的隐形眼镜和人工晶状体、激光聚焦发生器以及需要扩展焦深的成像应用。
更新日期:2020-05-04
down
wechat
bug