当前位置: X-MOL 学术Chem. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Zircon formation in mafic and felsic rocks of the Bushveld complex, South Africa: Constraints from composition, zoning, Th/U ratios, morphology, and modelling
Chemical Geology ( IF 3.6 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.chemgeo.2020.119647
D. Gudelius , A. Zeh , A.H. Wilson

Abstract Zircon is a potential petrogenetic indicator that can be used to derive physicochemical conditions during magma crystallization. In this study, such conditions are obtained from zircon of both felsic and mafic rocks of the Bushveld Complex (BC), which are characterized by a wide range in bulk-rock Zr contents (4–552 ppm). For that, information from bulk-rock compositions, petrography, zircon trace element data and morphologies are combined with results of thermodynamic modelling using the software packages rhyolite-MELTS and Perple_X. In felsic rocks (Lebowa Granite, Rashoop Granophyre), zircon is formed in rutile-free assemblages together with olivine-clinopyroxene-amphibole-biotite-ilmenite-titanite-apatite after ≥20% fractional crystallization at 761–935 °C (mean: 860 °C), based on Ti-in-zircon thermometry using aTiO2 = 0.3, in agreement with independent geothermometers and modelling results. The resulting zircon populations show {100}- and {101}-dominated morphologies as well as high ƩREE (mean: 651 ppm) and low Ti contents (mean: 9.5 ppm), and only minor zoning in Th/U (0.3–0.8) and Nb/Ta (1.2–4.4). Identical zircon characteristics in gabbros and diorites of the Upper Zone within the Rustenburg Layered Suite (RLS) suggest admixing of felsic melts during ingression of mafic parental magmas. In contrast, zircons in mafic rocks of the lower RLS (Basal Ultramafic Sequence to lower Main Zone) show significantly lower ƩREE (mean: 324 ppm), commonly higher Ti contents (8–60 ppm), as well as large variations in Ti, U, Th contents, Th/U (0.2–24) and Nb/Ta ratios (0.15–18) as well as in zircon morphology. These zircons mostly occur in rutile-bearing intercumulus domains associated with orthopyroxene-biotite-amphibole-plagioclase-quartz-rutile and are formed at 690–962 °C (mean: 835 °C; aTiO2 = 1.0) based on Ti-in-zircon thermometry. These temperatures are in good agreement with zircon morphologies, but mostly higher than those obtained by rhyolite-MELTS modelling, suggesting zircon growth at 75% fractional crystallization of high Mg andesitic (B1) and tholeiitic parental magma (B2). These lower temperatures perhaps result from oversimplified modelling parameters or may reflect variable mixing of parental magma with evolved resident magma. Zircon populations in rutile-bearing mafic rocks of the lower RLS reveal two distinct zoning trends: an early trend at high Ti (>20 ppm), characterized by increasing Th/U (0.5 to 18) at decreasing U (175 to 10 ppm) from core to rim and a reverse trend at lower Ti contents. Both trends require zircon formation in intercumulus melt pockets at high zircon/melt ratios. The high-Ti trend can be explained by Rayleigh-like fractionation due to zircon growth together with rutile, both having highly different partition coefficients for U ≫ Th. The low-Ti trend results from zircon growth after onset of the biotite-in reaction, causing breakdown of previously formed rutile, thereby releasing U but no Th. The absence of pronounced Th/U zoning of zircon in felsic rocks reflects zircon growth in less fractionated melts, resulting in Th U fractionation compensated by coeval crystallization of abundant rock-forming minerals, all being highly incompatible for Th and U.

中文翻译:

南非布什维尔德复合体的基性和长英质岩石中的锆石形成:成分、分带、Th/U 比、形态和建模的限制

摘要 锆石是一种潜在的岩石成因指示剂,可用于推导岩浆结晶过程中的物理化学条件。在这项研究中,这种条件是从布什维尔德复合体 (BC) 的长英质和基性岩石的锆石中获得的,其特点是大块岩石 Zr 含量范围广泛 (4-552 ppm)。为此,将来自大块岩石成分、岩石学、锆石微量元素数据和形态的信息与使用流纹岩-MELTS 和 Perple_X 软件包的热力学建模结果相结合。在长英质岩石(Lebowa Granite、Rashoop Granophyre)中,锆石与橄榄石-斜辉石-角闪石-黑云母-钛铁矿-钛铁矿-磷灰石在 761-935°C 下分级结晶 ≥20%(平均:860 °C),基于使用 aTiO2 = 0.3 的 Ti-in-zircon 测温,与独立地温计和建模结果一致。由此产生的锆石群显示出以 {100} 和 {101} 为主的形态以及高 ƩREE(平均值:651 ppm)和低 Ti 含量(平均值:9.5 ppm),并且仅在 Th/U(0.3-0.8 ) 和 Nb/Ta (1.2–4.4)。Rustenburg 层状岩层 (RLS) 内上带辉长岩和闪长岩中相同的锆石特征表明,在母质母岩浆侵入过程中混合了长英质熔体。相比之下,较低 RLS(基底超镁铁质层序到较低主带)的基性岩石中的锆石显示出显着较低的 ƩREE(平均值:324 ppm),通常较高的 Ti 含量(8-60 ppm),以及 Ti 的较大变化, U、Th 含量、Th/U (0.2–24) 和 Nb/Ta 比 (0.15–18) 以及锆石形态。这些锆石主要出现在与斜方辉石-黑云母-角闪石-斜长石-石英-金红石相关的含金红石的积云域中,形成于 690–962 °C(平均:835 °C;aTiO2 = 1.0),基于 Ti-in-zircon测温。这些温度与锆石形态非常吻合,但大多高于通过流纹岩-MELTS 建模获得的温度,这表明锆石在高镁安山岩 (B1) 和拉斑岩母岩浆 (B2) 75% 分晶结晶时生长。这些较低的温度可能是由于过度简化的建模参数造成的,或者可能反映了母岩浆与演化的常驻岩浆的可变混合。较低 RLS 的含金红石基性岩石中的锆石种群显示出两种不同的分区趋势:高 Ti (>20 ppm) 的早期趋势,其特征是 Th/U (0. 5 到 18)从核心到边缘降低 U(175 到 10 ppm),而在较低的 Ti 含量下呈相反趋势。这两种趋势都需要在高锆石/熔体比下在积云熔穴中形成锆石。由于锆石与金红石一起生长,两者具有非常不同的 U ≫ Th 分配系数,因此高 Ti 趋势可以用瑞利分馏来解释。低钛趋势是由于黑云母反应开始后锆石的生长,导致先前形成的金红石分解,从而释放 U 但不释放 Th。长英质岩石中锆石没有明显的 Th/U 分带反映了锆石在分馏较少的熔体中生长,导致 Th U 分馏被丰富的造岩矿物的同时期结晶所补偿,所有这些都与 Th 和 U 高度不相容。这两种趋势都需要在高锆石/熔体比下在积云熔穴中形成锆石。由于锆石与金红石一起生长,两者具有非常不同的 U ≫ Th 分配系数,因此高 Ti 趋势可以用瑞利分馏来解释。低钛趋势是由于黑云母反应开始后锆石的生长,导致先前形成的金红石分解,从而释放 U 但不释放 Th。长英质岩石中锆石没有明显的 Th/U 分带反映了锆石在分馏较少的熔体中生长,导致 Th U 分馏被丰富的造岩矿物的同时期结晶所补偿,所有这些都与 Th 和 U 高度不相容。这两种趋势都需要在高锆石/熔体比下在积云熔穴中形成锆石。由于锆石与金红石一起生长,两者具有非常不同的 U ≫ Th 分配系数,因此高 Ti 趋势可以用瑞利分馏来解释。低钛趋势是由于黑云母反应开始后锆石的生长,导致先前形成的金红石分解,从而释放 U 但不释放 Th。长英质岩石中锆石没有明显的 Th/U 分带反映了锆石在分馏较少的熔体中生长,导致 Th U 分馏被丰富的造岩矿物的同时期结晶所补偿,所有这些都与 Th 和 U 高度不相容。由于锆石与金红石一起生长,两者具有非常不同的 U ≫ Th 分配系数,因此高 Ti 趋势可以用瑞利分馏来解释。低钛趋势是由于黑云母反应开始后锆石的生长,导致先前形成的金红石分解,从而释放 U 但不释放 Th。长英质岩石中锆石没有明显的 Th/U 分带反映了锆石在分馏较少的熔体中生长,导致 Th U 分馏被丰富的造岩矿物的同时期结晶所补偿,所有这些都与 Th 和 U 高度不相容。由于锆石与金红石一起生长,两者具有非常不同的 U ≫ Th 分配系数,因此高 Ti 趋势可以用瑞利分馏来解释。低钛趋势是由于黑云母反应开始后锆石的生长,导致先前形成的金红石分解,从而释放 U 但不释放 Th。长英质岩石中锆石没有明显的 Th/U 分带反映了锆石在分馏较少的熔体中生长,导致 Th U 分馏被丰富的造岩矿物的同时期结晶所补偿,所有这些都与 Th 和 U 高度不相容。
更新日期:2020-07-01
down
wechat
bug