当前位置: X-MOL 学术Ann. Mat. Pura Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A note on the nonexistence of positive supersolutions to elliptic equations with gradient terms
Annali di Matematica Pura ed Applicata ( IF 1.0 ) Pub Date : 2020-05-02 , DOI: 10.1007/s10231-020-00987-2
A. Aghajani , C. Cowan

We prove that if the elliptic problem \(-\Delta u+b(x)|\nabla u|=c(x)u\) with \(c\ge 0\) has a positive supersolution in a domain \(\varOmega \) of \( {\mathrm {R}}^{N\ge 3}\), then cb must satisfy the inequality

$$\begin{aligned} \sqrt{ \int _\varOmega c\phi ^2}\le \sqrt{ \int _\varOmega | \nabla \phi |^2}+\sqrt{ \int _\varOmega \frac{b^2}{4}\phi ^2},\quad \phi \in C_c^\infty (\varOmega ). \end{aligned}$$

As an application, we obtain Liouville-type theorems for positive supersolutions in exterior domains when \(c(x)-\frac{b^2(x)}{4}>0\) for large |x|, but unlike the known results, we allow the case \(\lim _{|x|\rightarrow \infty }c(x)-\frac{b^2(x)}{4}=0\). The weights b and c are allowed to be unbounded. In particular, among other things, we show that if \(\tau :=\limsup _{|x| \rightarrow \infty }|xb(x)|<\infty, \) then this problem does not admit any positive supersolution if

$$\begin{aligned} \liminf _{|x| \rightarrow \infty }|x|^2c(x)> \frac{(N-2+\tau )^2}{4}, \end{aligned}$$

and, when \(\tau =\infty , \) we have the same if

$$\begin{aligned} \limsup _{R\rightarrow \infty } R\left( \frac{ \inf _{R<|x|<2 R} (c(x)-\frac{b(x)^2}{4})}{\sup _{\frac{R}{2}<|x|<4 R}|b(x)|}\right) =\infty . \end{aligned}$$


中文翻译:

关于不存在梯度项的椭圆型方程正解的不存在的注记

我们证明如果椭圆问题\(-\ Delta u + b(x)| \ nabla u | = c(x)u \)\(c \ ge 0 \)在一个域\(\ varOmega \)\({\ mathrm {R}} ^ {N \ GE 3} \) ,然后ç,  b必须满足不等式

$$ \ begin {aligned} \ sqrt {\ int _ \ varOmega c \ phi ^ 2} \ le \ sqrt {\ int _ \ varOmega | \ nabla \ phi | ^ 2} + \ sqrt {\ int _ \ varOmega \ frac {b ^ 2} {4} \ phi ^ 2},\ quad \ phi \ in C_c ^ \ infty(\ varOmega)。\ end {aligned} $$

作为应用,当\(c(x)-\ frac {b ^ 2(x)} {4}> 0 \)大时| | | | | | | | | | | | | | | | | | | | | | | x |,但不同于已知结果,我们允许情况为\(\ lim _ {| x | \ rightarrow \ infty} c(x)-\ frac {b ^ 2(x)} {4} = 0 \)。权重bc可以不受限制。特别地,除其他外,我们证明,如果\(\ tau:= \ limsup _ {| x | \ rightarrow \ infty} | xb(x)| <\ infty,\),那么此问题将不接受任何正解如果

$$ \ begin {aligned} \ liminf _ {| x | \ rightarrow \ infty} | x | ^ 2c(x)> \ frac {(N-2 + \ tau)^ 2} {4},\ end {aligned} $$

并且,当\(\ tau = \ infty,\)时,如果

$$ \ begin {aligned} \ limsup _ {R \ rightarrow \ infty} R \ left(\ frac {\ inf _ {R <| x | <2 R}(c(x)-\ frac {b(x) ^ 2} {4})} {\ sup _ {\ frac {R} {2} <| x | <4 R} | b(x)|} \ right)= \ infty。\ end {aligned} $$
更新日期:2020-05-02
down
wechat
bug