当前位置: X-MOL 学术Curr. Opin. Cell Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lights, cytoskeleton, action: Optogenetic control of cell dynamics.
Current Opinion in Cell Biology ( IF 6.0 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.ceb.2020.03.003
Torsten Wittmann 1 , Alessandro Dema 1 , Jeffrey van Haren 2
Affiliation  

Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein-protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.

中文翻译:


光、细胞骨架、作用:细胞动力学的光遗传学控制。



细胞生物学正在从观察分子转向实时控制分子,这是从机制上理解细胞如何工作的关键一步。光遗传学最初是从控制神经元活动的光门控离子通道发展而来,现在描述了任何旨在完成特定光介导任务的基因编码蛋白质系统。最近的光敏开关采用了许多巧妙的设计,可以对几乎所有感兴趣的蛋白质或途径进行空间和时间控制。下一代光遗传学包括光控蛋白质-蛋白质相互作用和变形光电传感器,其与活体显微镜相结合,能够对活细胞中的动态蛋白质功能进行急性调节和分析。我们简要概述了各种类型的光遗传学开关。然后,我们讨论如何使用不同的方法通过 Rho GTPase 信号传导、微管和肌动蛋白组装、有丝分裂纺锤体定位和细胞内运输来控制光细胞骨架动力学,并强调不同实验策略的优点和局限性。
更新日期:2020-05-01
down
wechat
bug